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Fragment-based Surface Inpainting

G.H. Bendels, R. Schnabel, R. Klein

Institut für Computergraphik, Universität Bonn, Germany

Max Planck model with missing data. The hole is inpainted by copying appropriate fragments of other parts of the object to the hole region.

Abstract
Inpainting is a well-known technique in the context of image and art restoration, where paint losses are filled up
to the level of the surrounding paint and then coloured to match. Analogue tasks can be found in 3D geometry
processing, as digital representations of real-world objects often contain holes, due to hindrances during data
acquisition or as a consequence of interactive modelling operations. In this paper we present a novel approach to
automatically fill-in holes in structured surfaces where smooth hole filling is not sufficient. Previous approaches
inspired by texture synthesis algorithms require specific spatial structures to identify holes and possible candidate
fragments to be copied to defective regions. Consequently, the results depend heavily on the choice and location
of these auxiliary structures, such that for instance symmetries are not reconstructed faithfully. In contrast, our
approach is based on local neighbourhoods and therefore insensitive with respect to similarity transformations. We
use so-called guidance surfaces to guide and prioritise the atomic filling operations, such that even non-trivial and
larger holes can be filled consistently. The guidance surfaces are automatically computed and iteratively updated
during the filling process, but can also incorporate any additional information about the surface, if available.
While custom-tailored for point-sets, our approach is suitable as-is for polygonal representations as well.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Comp. Geometry and Object Modeling]:

1. Introduction

Creating digital 3D copies of real-life objects is becoming
a standard procedure for various application fields - rang-
ing from cultural heritage applications and medicine to au-
tomotive, artistic, and entertainment industries, just as tra-
ditional photography has been for the past decades. Despite
all technological progress, models resulting even from the
most careful acquisition process are generally incomplete,
due to occlusion, the object’s material properties or spatial
constraints during recording (among others), i.e. they con-

tain undersampled regions and/or holes. On the other hand,
holes are also deliberately introduced into an object, as re-
moving damaged, undesired or unnecessary parts of an ob-
ject is an important tool in interactive modelling.

In order to derive complete and visually appealing mod-
els, these holes have to be filled appropriately, i.e. the ba-
sic geometry has to be smoothly patched and the (unknown,
yet assumed) detail geometry has to be restored or extrap-
olated, taking into account the context of the object. That
this ill-posed task has hope of being solved at all is based
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on the observation, that real-life objects often exhibit a high
degree of coherence in the sense that for missing parts one
can find similar regions on the object. This observation has
been exploited extensively in the field of 2D texture syn-
thesis and disocclusion, and also in 3D surface completion.
The problem with previous approaches, though, is that they
require specific spatial structures to identify holes and pos-
sible candidate fragments to be copied to defective regions.
Consequently, the results depend heavily on the choice and
location of these auxiliary structures, such that for exam-
ple symmetries are not reconstructed faithfully. In contrast,
we propose in this paper a surface inpainting method that
analyses the neighbourhood of a hole, finds best matching
local neighbourhood patches represented in local frames (the
3D analogue to what is called a fragment in image process-
ing), and fills the hole with copies of these. By finding best
matches hierarchically on several scales, the hole is filled in
conformance with the context with respect to all considered
scales.

Key contributions of this paper are

• A robust hole detection scheme, fully automatic, yet cus-
tomisable to the application’s demands.

• A novel automatic hole filling algorithm based on local
neighbourhoods and thereby independent of any specific
spatial subdivision

• A multi-level local neighbourhood descriptor to reflect
different frequency bands

In the following section, we’ll shortly review the rel-
evant literature, covering the inspiring works on 2D im-
age processing and texture synthesis, but also previous ap-
proaches to automatic hole filling for boundary representa-
tions in 3D. Then we describe our algorithm in a one-level,
non-hierarchical way in section 4, and extend the algorithm
in section 5 to exploit Guidance Surfaces in an multi-scale
approach. The robust detection of holes in the surface – a
task that is non-trivial if dealing with point-set-surfaces – is
subject of section 6.

2. Previous Work

The work most relevant for our paper can be subdivided into
two basic categories, 2D image completion and 3D surface
completion.

2.1. Image Completion

In image processing, synthesising images or parts thereof,
comes in two flavours: In texture synthesis, from a sample
image a new (generally larger) image is to be created that
appears realistic and preserves visual properties of the sam-
ple image. This problem has been approached by explicitly
modelling the distribution of the textural features which hu-
mans perceive as a specific type of texture [Per85, Tur01], by
histogram matching [HB95, Bon97, PS00], or Markov ran-
dom fields [ZWM98]. Despite the appealing mathematical
formulation, these parametric approaches have been outper-
formed by non-parametric models that synthesize textures

exemplar-based by transferring pixels [EL99] or patches
[WL00, NA03] with appropriate neighbourhoods to the new
image.

Image completion, on the other hand, aims at filling-in
holes in an image that are generated erasing defective, dam-
aged or undesired parts of an image, by extending infor-
mation available in the remaining image. Here, in addition
to the overall visual properties of the image, the larger and
highly irregular structures of the image have to be preserved.
With this requirement in mind, Ballester et al. [BBC∗01]
fill images by explicitly propagating lines of equal bright-
ness (so-called isophotes) by solving variational problems,
whereas Jia et al. [JT03] segment the image and propagate
segment borders into the hole region, before filling colors in
a pixel-based approach. Using isophote-propagation to guide
what is otherwise a pure texture synthesis approach, Crim-
inisi et al. [CPT03] presented an approach that is similar
to ours in the sense that, in order to propagate larger scale
structures to hole regions, we also prioritise our hole filling
steps according to the detection of feature lines on the sur-
face – lines that can be considered as the 3D analogue to
isophotes in images. Our approach also benefits from work
presented by Drori et al. [DCOY03], who assign iteratively
updated confidence values to each pixel in the image and
exploit these confidence values for guiding the filling steps.

2.2. Surface Completion

As 3D data-acquisition generally leads to incomplete sur-
faces, the need to fill holes in 3D surfaces is traditionally
part of surface reconstruction algorithms (see [CL96] as an
example), but has also achieved recent research attention in
its own right [DMGL02, VCBS03, Lie03, CDD∗04].
Lifting the 2D-surface into a 3D volumetric representation,
Davis et al. [DMGL02] extend a signed distance function
that is initially only defined close to the known surface to the
complete space using volumetric diffusion, thereby complet-
ing the surface even for non-trivial hole boundaries. Clarenz
et al. [CDD∗04] cover surface holes minimizing Willmore
energy functionals, leading to surface patches with guaran-
teed continuity properties.
In some applications, however, smooth filling of holes is not
sufficient; this is particularly the case in cultural heritage ap-
plications, where virtual museums require visual appealing
reconstructions of cultural heritage objects.In such applica-
tions, so-called surface inpainting algorithms are needed that
do not only reconstruct the basic geometry of the defective
object, but also their fine scale geometric features. Although
the problem of completing 2D images appears conceptually
almost identical to completing 2D surfaces in 3D, transfer-
ring successful techniques from image completion to 3D
is far from trivial. The lack of a regular grid deprives us
from the universal parameter domain that is so extensively
exploited in 2D image processing. As a consequence, al-
ready the construction of multi-scale hierarchies represent-
ing different frequency bands – apparently a key ingredi-
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h = 0, . . . ,H Hierarchy level (H for coarsest)

Ph = {ph
i } Point sets (hierarchy level h)

Bh = {bh
i } ⊂ Ph Sets of border points

Ch = {ch
i } ⊂ Ph \Bh Candidate sets

α : Ph 7→ [0,1] Confidence value

N (ph
i )⊂ Ph Local neighbourhood of p

Gh Guidance surface

n,nh Number of points in Ph

N Number of points in the descriptor

χ : Ph→R2N Descriptor

Table 1: Notation and Symbols

ent to many image completion approaches – proves to be
challenging, as the vertices’ positions at the same time en-
code both, signal and domain of the function to be analysed
[GSS99, Tau95, PG01]. To our best knowledge, there are yet
only few publications that address the problem of detail pre-
serving during hole filling [SK02, SACO04]. Adapting tech-
nologies from exemplar-based image synthesis methods and
similar in concept to our approach, Sharf et al. [SACO04] fill
holes by copying existing surface patches from the object to
the hole region. The fundamental problem of this algorithm
is that it is completely octree-based: Holes in the surface are
detected by checking for near-empty octree cells, different
scales in their hierarchical approach are represented through
octree levels, descriptors are based on a regular sampling of
a distance field, and, most importantly, patches to be copied
can be generated from other octree cells only. As a conse-
quence, even perfectly symmetrical objects can only be re-
constructed if the symmetry axis of a symmetrical feature
happens to coincide with an octree axis (or one of the con-
sidered, discrete rotations thereof). Furthermore, due to the
resulting non-invariance with respect to rotation, translation
and scaling, very careful parameter tuning is required to suc-
cessfully reconstruct real-world examples.

3. Overview and Terminology

Given a point set P ⊂ R3 representing a manifold surface,
the goal of our algorithm is to fill any existing holes suitably,
i.e. taking into account the object’s local and global context.
This goal is achieved by first identifying Boundary Points,
i.e. points that are close to regions in the point set with
insufficient sampling, and then by copying appropriate
local neighbourhood patches (so-called fragments) from
a candidate set to the hole region. This way the hole is
iteratively closed. As newly inserted points influence later
filling steps, we assign to every point in the point set a
confidence value, which is equal to 1 for all points in the
original point set and is in the interval [0,1) for inserted
points.

In accordance with the terminology in texture synthesis
approaches, we call the regions close to insufficient sam-
pling Target Fragments and regions from where points
to be inserted are drawn are called Source or Candidate
Fragments. With the notation given in table 1, the basic
workflow of our algorithm can best be seen in pseudo-code:

Fill (Point Set Hierarchy PH , . . . ,P0)

compute initial guidance surface GH

for all h = H, . . . ,0 do
Bh← find boundary points in Ph

Ch← find candidate points in Ph

compute descriptors χ(Ch) and χ(Bh) using Gh

Q← prioritise Bh

whileQ not empty do
b← top(Q)
find best matching candidate c ∈ Ch

copyN (c) toN (b)
update Bh andQ

end while
Gh−1←MLS(Ph)

end for

The overall approach is hierarchical, i.e. it reconstructs the
surface in the hole region on coarse scales first and exploits
the result to derive the guidance function for the next levels.
Hence, the first step in our algorithm is to compute a point set
hierarchy, consisting of H point sets P0, . . . ,PH , where P0

is the original point set and P1, . . . ,PH are smoothed and
(optionally) subsampled copies thereof. For clarity of pre-
sentation, though, we describe a non-hierarchical, 1-level-
formulation of our approach first, before we motivate and
present the hierarchical formulation in section 5.

4. Non-Hierarchical Formulation

Suppose we are given a point set P = {p1, . . . ,pn} ⊂ R3.
Following the notion from 2D-image synthesis, we define
for every point p ∈ P in conjunction with a local frame
Fp and a radius ρ ∈ R a corresponding surface fragment
Nρ(p)⊂ P as

Nρ(p) = { pi ∈ P | d(p,q(pi))≤ ρ } ,

where q(pi) is the projection of pi into the plane defined by
Fp. In order to establish the defining local frame, we take the
best fitting plane to the k-nearest neighbours of p, as sug-
gested in [HDD∗92], and use it as parameter plane for the
fragment and its normal as surface normal in p. Given this
frame, the points in the fragment can efficiently be collected
traversing a proximity graph (as suggested in [KZ04]), start-
ing at p and proceeding in a best first manner, always adding
the point with smallest d(p,q(pi)) to the fragment, until no
more points inside ρ are encountered [WK04]. Please note
that we use the terms fragment and local neighbourhood
synonymously throughout this paper, and that we suppress
the index ρ in unambiguous cases, as we do with the index
h.
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Figure 1: Illustration of a local point set neighbourhood
(triangulated for display purposes, centre) and its regularly
resampled counterpart (left). Hole regions in the original
surface (red square) lead to invalid descriptor components
(colored in red).

4.1. Neighbourhood Descriptors

Unlike 2D image fragments, 3D surface fragments consti-
tute an irregular and unstructured sampling of a surface.
As a consequence, there is no canonic distance measure to
quantify the alikeness of two fragments. Therefore, a neigh-
bourhood descriptor (together with a corresponding distance
function) has to be defined. In a recent approach, Zelinka et
al. [ZG04] have shown so-called Geodesic Fans to faithfully
identify regions on a surface that are geometrically similar.
Their descriptor is a vector of N discrete samples of one or
several signals defined on the surface. The samples are taken
at N fixed sample positions according to some sampling pat-
tern given in geodesic polar coordinates.
Dealing with point sets, the computation of geodesics is an

R R

Figure 2: Descriptor layout. Left: The number of sample
points per ring grows linear with respect to its length, i.e. the
sampling rate for each ring is identical (Four samples per
2π ·R in the depicted case, where R is the innermost ring’s
radius). Right: Descriptor as suggested in [ZG04]; here, the
number of sample points per ring is constant, such that the
sampling rate decreases linearly.

ill-defined and expensive operation. Therefore, we interpret
these N sample positions as polar coordinates in the para-
meter plane described above, scaled to fit into the parameter
domain of the fragment. Also, we use two signals for our de-
scriptor, the height of the fragment over the parameter plane,
as well as its confidence at that position. Thus our descriptor

for p becomes

χ(p) =
(
ξ

p
1 , . . . ,ξ

p
N ,α

p
1 , . . . ,α

p
N
)t ∈R2N

We chose the sampling pattern depicted in fig. 2 (left) as it
does not emphasize the regions close to the centre.

To compute the descriptor χ(p) we construct a 2D Delau-
nay triangulation of the projection of N (p) into the para-
meter plane yielding an efficient height field representation
with both height and confidence values being interpolated
linearly inside the triangles.

Obviously, for points close to the boundary of a hole,
the parameter domain will stretch into regions containing no
points. In order to reliably detect all sample positions of the
descriptor that fall into this empty region, we add as con-
straints to the triangulation the projected edges of the bound-
ary loop (see sec. 6). Then all sample points outside the con-
vex hull of the fragment or within a triangle with all vertices
boundary receive a confidence value of zero. We call these
descriptor components invalid.

Finally, as in [ZG04], the distance between two descrip-
tors is given by a minimisation over a set of transformations
ϕ corresponding to discrete rotations and mirroring (We per-
form linear interpolation on the rings if necessary due to the
rotations):

δ(χ(p),χ(q)) = min
ϕ

δ̃(χ(p),χ(qϕ)), (1)

with

δ̃(χ(p),χ(q)) =
1

∑i α
p
i α

q
i

N

∑
i=1

α
p
i α

q
i (ξp

i −ξ
q
i )2

4.2. 1-Level Inpainting

The basic idea is now to find for every b ∈ B an appropriate
candidate c∈P and to copy its neighbourhood to the invalid
parts ofN (b). To guarantee that invalid regions inN (b) can
indeed be filled with the corresponding regions in N (c), the
candidate set C is built by collecting all points p ∈ P , whose
descriptors do not contain any invalid components, i.e.

C =
{

c ∈ P | ξ
c
i valid ∀i

}
.

With a suitable candidate set and a discriminative descrip-
tor at hand, inpainting simply consists of finding the best
matching candidate cb for any boundary point b and co-
aligning cb’s local frame with the frame of N (b).

Here, we also apply the minimising transformation ϕ ac-
cording to eqn. 1. In addition to that, we also perform one
ICP-step (taking into account the descriptor samples only
and using fixed correspondences) in order to compensate for
little deviations that might result from the discreteness of our
set of considered rotations.
Finally, all points from N (c) corresponding to invalid re-
gions in χ(b) are inserted into P and the sets B and C are
updated.
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4.3. Ordering of the Filling Operations

Local neighbourhoods of boundary points cannot be guaran-
teed to cover also a part of "the other side" of the hole (in
fact, in most cases they won’t). In cases when the descrip-
tor gives no hint to what the basic geometry of the missing
surface is like, this might lead to inappropriate candidate se-
lection, as illustrated in figure 3. This is especially the case
for small neighbourhood sizes, where the valid region cap-
tures only very local properties of the surface, and reflects
the fact that the local neighbourhood size must correspond
to the scale of the feature to be reconstructed. (We will dis-
cuss this into more detail in section 5). To address this prob-

Figure 3: Filling operations in planar regions (left) might
lead to undesired extension of the planar structure.

lem, we prioritise the atomic filling operations, much in the
spirit of the fragment-based image completion approach by
Criminisi et al. [CPT03]. The main idea is to select the most
discriminative target fragments for first filling. To measure
the expressiveness of a fragment, we compute the standard
deviation σ of the descriptor values along the sampling rings
depicted in fig. 2. By means of this criterion, regions of high
curvature are preferred over flat regions.
In addition to this, we want to favor target points where
only little geometry is missing over those points that lie
comparably isolated in large undersampled regions. This
is measured by means of an aggregated confidence value
α(χp) = 1

N ∑i α(ξp
i ) that is computed for every target de-

scriptor.

We experimented with several combinations of the two
criteria α and σ to prioritise the filling operations. Accord-
ing to our experiments, a threshold approach performed best:
Among those target descriptors that have the highest confi-
dence value (quantised into ten bins), we choose the one with
highest σ to be filled first. This way, of those target fragments
with a high confidence we favor the most discriminative.

The heuristic approach presented here helps to resolve
problems as illustrated in figure 3. In this case our algo-
rithm correctly chooses the target fragment indicated as a
green disc in the centre image to be processed first. It is not,
however, sufficient to faithfully fill larger holes with smaller
neighbourhood sizes, that might be required to reconstruct
also fine detail properties of the object.

4.4. Fragment Blending

The distance function δ defined in eqn. 1 minimises the
alignment error of fragments to be pasted into hole regions
in the least squares sense, and therefore does not always pre-
vent the appearance of local discontinuities at the boundary.
To ameliorate this, we perform an additional blending step,
based on local diffusion of the descriptor values. First, all

Figure 4: David’s head, subsampled to 300000 points, orig-
inal (top left), iteratively smoothed once with k = 100 (top
right), after 5 (bottom left), and 8 iterations (bottom right).
The discs indicate the corresponding neighbourhood size.

confidence values αi in the target descriptor are set to dαie.
We then perform r/2 diffusion steps affecting only those en-
tries with an initial confidence value of zero, where r is the
number of rings in the descriptor. For each step t → t + 1,
we set

ξ
t+1
i =

∑ j∈Ni
α

t
jξ

t
j

∑ j∈Ni
αt

j
and α

t+1
i =

∑ j∈Ni
α

t
j

|Ni|
.

Here Ni denotes the index set of the four neighbouring de-
scriptor samples of ξi. The blended height h̃ of an incoming
point q in the target frame is then given by

h̃ = (1−αq)h+αq ξq,

where αq and ξq are the entries of the diffused descriptor at
the corresponding position, estimated by bilinear interpola-
tion. This way, we allow inserted points farther away from
confident target points to deviate from these target points’
height values.

5. Hierarchical Formulation

The essence of exemplar-based completion is to exploit co-
herence and similarity between the region of interest and ap-
propriate candidate regions of the considered object. Geo-
metric properties of the hole region, though, might be repre-
sented in different scales, and in many cases, similarity rela-
tions present in different scales correspond to very different
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regions on the object. It is therefore important to allow candi-
dates to stem from the optimal object region per scale, such
that for instance the bunny’s missing left knee (see fig. 9) is
reconstructed on coarse levels by copying the bunny’s right
knee, whereas the fur structure, exhibiting different similar-
ity relations is reconstructed from various different locations
on the bunny’s back.

Only in the presence of real symmetry, where similarity
on all considered scales happens to relate to the same candi-
date region, the one-level approach described in the previous
section is sufficient. For instance, the missing left eye and
nose region of the Max-Planck-model (as shown in fig. 8)
can be reconstructed using transferred and mirrored copies
of parts of the opposite side of the face. This type of simi-
larity relation ranging over all considered scales – rarely en-
countered when dealing with images – is relevant for large
classes of 3D objects. Nevertheless, in order to handle cases
as described above, we propose a hierarchical, multi-level
approach, whose first step is to create a point set hierarchy
P1, . . . ,PH with according scales ρ1, . . . ,ρH , each point set
representing the (defective) object and its geometrical prop-
erties up to the according scale.

5.1. Creating the Point Set Hierarchy

We approximate the scale-space representation of the input
model by iteratively applying Laplacian smoothing, deriv-
ing coarser and coarser scales, corresponding to ever larger
kernel widths. Specifically, to derivePh+1 fromPh we com-
pute new point positions

ph+1 =
1
µ

k

∑
j=1

µ jph
j ,

as the weighted mean of all k-nearest-neighbours ph
j of ph,

where µ = ∑ j µ j. (Actually, we perform the smoothing in di-
rection of the surface normal only, as we wish to smooth the
surface itself, rather than the distribution of sample points in
the surface). This corresponds to smoothing Ph with a ker-
nel width of

ρp = max
j=1,...,k

d(p,ph
j).

The average distance to the kth-nearest neighbour

ρ =
1
n ∑ρp

is called the k-Ring Radius and describes a natural size of
the local neighbourhood patches, as it contains all the detail
information up the respective hierarchy level, with all higher
level detail information smoothed out (see fig.4).
We are aware that our smoothing scheme has two main draw-
backs: On the one hand, it is a well known fact that Gaussian
filtering causes shrinkage and ultimately converges to a sin-
gle point. On the other hand, as the points contributing to
the new, filtered point positions are a fixed number of near-
est neighbours, the sampling density influences the smooth-

ing. Strictly speaking, claiming that a certain "scale" is rep-
resented in a smoothed point set, therefore holds only for
uniformly sampled point sets.
To address these drawbacks, more sophisticated filtering
methods could be applied, in the spirit of [KH98, CDR00]
or [Tau95]. However, in our setting the approximated scales
are used to guide the filling process only and therefore we
found our simple approach to be sufficient.

5.2. Multi-Level Inpainting

Based on the point set hierarchy P0, . . . ,PH , we formulate
the inpainting as a bottom-up process, filling the hole in
the coarsest scale representation PH first and then consec-
utively on the finer levels up to the finest level P0. In each
step (aside from the first step: PH is completed using the
non-hierarchical formulation of our algorithm as described
in sec. 4), we use the previous, next coarser level point set
to construct a guidance surface that can be used in the target
descriptors for the filling step on the current level. This way
we can encode hints to the larger scale geometry into the
descriptor components that have been invalid till now and
hence neglected.

Let the Guidance Surface Gh be any implicit represen-
tation of the (completed) point set Ph+1. In our approach,
we use the zero set of the MLS-approximation of Ph+1, but
any other locally evaluable representation could also be ap-
plied. A straight-forward approach (that would also resem-
ble comparable approaches in 2D image processing) would
then be to assign height values to invalid target descriptor
components by sampling Gh (see fig. 5, bottom left). This
straight-forward approach, however, would have the adverse
effect that even ideal candidates would not be considered a
perfect match. The reason for this is that inserting samples
from Gh to the current level’s descriptor inherently causes
two scales to be mingled. The resulting hybrid descriptor –
incorporating two scales at the same time – is in fact com-
parable to descriptors on neither the current level h nor the
coarser level h+1. This fact is illustrated in fig. 5.

5.3. 2-Layer Descriptor

As a consequence, we define 2-layer descriptors as illus-
trated in fig. 6:

• The first layer χh is constructed as described in sec. 4.1,
capturing the available local geometry from Ph only, and
assigning zero confidence to the invalid descriptor com-
ponents.

• For the second layer χh+1, we use the same parameter
plane and the same sampling pattern, but height values are
derived from the zero level set of the MLS-approximation
of Ph+1.

The distance function for the two-layer descriptor is then
simply a weighted sum of the distance functions per level:

δ(χ(p),χ(q)) = δ(χh(p),χh(q))+ τ δ(χh+1(p),χh+1(q)).
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Defective Target Surface Ideal Candidate

original

level h

level h+1

Candidate 
Descriptor
 (level h)

Candidate 
Descriptor
 (level h+1)

Target
Descriptor

 (level h / h+1)

Figure 5: Defective target surface and an ideal candidate
(bold), together with two levels from the scale space repre-
sentation (dashed, level h+1 filled, level h incomplete). Up-
dating target descriptor values invalid on level h using the
guidance surface from level h+1 leads to a descriptor (bot-
tom left) that is not well comparable with either of the can-
didate descriptors (bottom centre / right).

While the parameter τ is arbitrary in principle, a value of
0.5 has proven to produce good results in our experiments.
In cases where multiple hierarchy levels are reconstructed,
it is advisable to increase τ for finer levels, as they can be
expected to be already a reliable reconstruction.

6. Hole Detection

Point set surfaces are by nature unstructured and do not con-
tain any adjacency or connectivity information. As a conse-
quence, defining and detecting holes – a trivial task in the
case of surfaces given as triangle mesh – is an ill-defined
problem in the case of point sets. Nevertheless, the robust
detection of connected hole boundaries is compulsory for
our algorithm.

The basic layout of our hole detection scheme is as fol-
lows: For each point p ∈ P we compute a boundary prob-
ability π(p), reflecting the probability that p is located on
or near a hole in the surface sampling. Thereafter, we ex-
ploit that the boundary points we are looking for have proxi-
mate neighbours that are also boundary, and construct closed
loops circumscribing the hole in a shortest cost path manner.

Target Descriptor (2-Layer) Candidate Descriptor  (2-Layer)

Figure 6: 2-Layer descriptor for a target and an ideal can-
didate region.

6.1. Boundary Probabilities

Figure 7: Left:The angle criterion is based on the maximum an-
gular gap. Centre: The halfdisc criterion computes the difference
vector to the average of its neighbours, that points in direction of
the interior surface. Right: The triangle formed by all Λ values and
the characteristic points for certain shapes.

We use three criteria to identify points lying on a sur-
face boundary. All compute a boundary probability measure
based on the local neighbourhood N (p) for each sample
point p.

The angle criterion

The angle criterion, that is described in [GWM01], [LP02]
and [MD04], projects all neighbouring points to the tangent
plane and sorts them according to their angle around the
centre sample. The largest gap g between two consecutive
neighbors is computed and the boundary probability is given
as

πangle(p) = min

(
g− 2π

k

π− 2π

k

,1

)
.

To make the angle criterion less susceptible to small inaccu-
racies in the normal direction, we modify the standard an-
gle criterium and ignore all points in N (p) whose differ-
ence vector with p is almost in normal direction, i.e. with
6 (n,pi−p) < 10. This is especially beneficial in the pres-
ence of noise and in case of point clouds constructed from
multiple range images, as here small errors in normal direc-
tion often cannot be avoided.

The halfdisc criterion

Requiring our point set to be a representation of a manifold
surface (with boundary), the neighbourhood of points on the
boundary is homeomorphic to a halfdisc. As a consequence,
the average of the neighbours will deviate from the centre
point in direction of the interior surface. In fact, we expect
it to lie in the centre of mass of a halfdisc in the plane, see
figure 7. Thus we compute the average of the neighborhood
and project it onto the tangent plane. The boundary probabil-
ity can then be deduced from the distance between the centre
point and the projected average µ in the following manner:

πhal f disc(p) = min

(
‖p−µ‖

4
3π

ρ
,1

)
.

(Note that the centre of a halfdisc is located at a distance of
4

3π
ρ to the centre of the full disc.)
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Figure 8: Max Planck data set. The artificially introduced hole is filled successively by copying best matching candidates (red
discs) to target regions (green discs).

The shape criterion

As noted in [GWM01], the shape of the correlation ellipsoid
of N (p) approximates the general form of the neighbouring
points. The shape of the ellipsoid in turn is encoded in the
eigenvalues λ0 ≥ λ1 ≥ λ2 of the weighted covariance matrix
of the points in N (p). We collect the relative magnitudes of
the eigenvalues into a decision vector

Λp =
1

λ0 +λ1 +λ2
(λ0,λ1,λ2),

by which we can categorise four basic different situations
(Boundary, Interior, Corner/Noise, and Line) according to
the following table:

Λ ≈ ( 2
3 , 1

3 ,0) Boundary

Λ ≈ ( 1
2 , 1

2 ,0) Interior

Λ ≈ ( 1
3 , 1

3 , 1
3 ) Corner/Noise

Λ ≈ (1,0,0) Line

The basic idea is now to identify boundary points b by the
location of their decision vector Λb in the triangle spanned
by the last three values of Λ in the table above. (see figure
7, right). This way we derive a shape probability indicated
by the decision vector as π̃Φ(p) = ‖Λp −ΛΦ‖, (where Φ

is any one of the four categories) and define the boundary
probability according to the ellipsoidal criterion as

πshape(p) =
π̃boundary(p)
∑Φ π̃Φ(p)

.

6.2. Closed boundary loops

Combining the three probabilities above, the total boundary
probability is given as

π(p) =
1
3
(
πangle(p)+πhal f disc(p)+πshape(p)

)
.

Based on this probability, we construct closed boundary
loops, that circumscribe the holes to be detected in the given
point set. This is achieved by assigning to every edge (p,q)
in the proximity graph a cost value 1

2 d(p,q) (π(p)+π(q)) and
constructing a minimal spanning tree. Boundary loops are
then derived by adding to this tree edges that are at the same
time both minimal and closing loops that are longer than a
certain threshold.

7. Results

We applied our fragment-based inpainting algorithm to var-
ious data sets of point sampled geometry. The objects de-
picted in the images of this paper exhibit holes in structured
surface regions and are in addition to this comparably large
in size. Reconstructing the surface for these holes using tra-
ditional smooth hole filling algorithms would have lead to
disturbing visual artifacts. In fig. 8, the basic workflow of our
algorithm can be seen. For target fragments (illustrated as
green disc) an optimal candidate fragment (red disc) is iden-
tified. The points corresponding to invalid target regions are
pasted into the point set after the according transformations
(translation, rotation, optional mirroring), which are deduced
from the descriptor comparisons, are applied. In near sym-
metric cases like faces, the non-hierarchical formulation of
our algorithm already gives satisfying results, given that the
required scale to cover the hole can be represented without
scale-space segmentation.
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Figure 9: Hierarchical reconstruction of the Stanford Bunny. First, a point set hierarchy (h = 0 to 3) of the defective bunny is
constructed (top). Starting with level 3, each level is filled per-se, where in level h, the level h + 1 serves as Guidance Surface
(bottom).

Fig. 9 demonstrates the use of our hierarchical formula-
tion for the exploitation of similarities that are spread over
several scales. Using our approach we were able to recon-
struct both the knee as a symmetrical large scale feature and
the fur structure that itself does not exhibit an analogue sym-
metry, but is also well presented as a coherent feature on the
surface on finer scales. During the coarse level inpainting
steps, corresponding target-candidate descriptor pairs were
identified. In this example, prioritising the target fragments
for filling according to their discriminativity was particularly
useful. This way, the target regions close to the bunny’s knee
were selected for filling first. During the finer scale filling
operations, the fur structure was transferred to the hole re-
gion from various (other) regions on the bunny’s back.

In order to assess the influence of the automatically com-
puted guidance surface and the candidate set on the inpaint-
ing results, we reconstructed the bunny data set with the help
of the perfect guidance and the perfect candidate set, namely
the complete point set itself. The combination of both, per-
fect guidance and perfect candidate set, resulted in the per-
fect reconstruction of the bunny (fig. 10). As opposed to
that, fig. 9 shows the hierarchical reconstruction of the bunny
without knowledge of the complete bunny.

We are aware that the method we use for generating a
scale space representation of the object has a number of in-
sufficiencies: It is non-uniform for irregularly sampled point
clouds, causes shrinkage, and the filtering behaviour in re-
gions around the holes differs from filtering the correspond-
ing complete regions. This leads to non-identical scale space
representations for what would have been identical regions
if not for the hole. Consequently, the smoothing in bound-
ary regions is of negative effect in cases, where, even on
coarsest scale, the hole region is of considerable curvature.
Excessively smoothing causes the flanks of the hole to be
straightened, such that a satisfying filling of this hole al-
ready at coarsest level fails. As stated before, in these cases

other sources of information could be considered for deriv-
ing guidance functions for the next finer levels.

8. Conclusions & Future Work

Inspired from exemplar-based techniques in 2D image
processing, we have introduced in this paper a novel method
for the filling of holes in structured point set surfaces. In
order to be able to recognise and exploit similarity and co-
herence properties in the object, we derived target and candi-
date fragments given in local frames, thereby making our al-
gorithm insensitive to similarity transformations as rotation,
translation and scaling. As the construction of descriptors
depending on the local frames is particularly apt for regions
that are well parameterisable over the tangent plane, we are
currently looking into incorporating 3D shape descriptors in
the spirit of [BMP02] into our approach. Here, the handling
of confidence attributes and the adaption of a 2-layer shape
descriptor is a challenge.

As a consequence of our hierarchical approach based on a
scale space representation of the object, our algorithm is able
to robustly identify and exploit similarity relations between
the region of interest and possibly various other locations on
the surface, depending on the respective scale.

In our current implementation, we did not yet apply any
acceleration strategy, that were proposed especially in the
corresponding image completion and texture synthesis liter-
ature. In particular, the incorporation of clustered analysis
methods applied on the set of candidates into our method
would be an easy yet interesting direction of future work.
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