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Abstract
Digitizing real-life objects via range scanners, stereo vision or tactile sensors usually requires the composition
of multiple range images. In this paper we exploit intensity images often recorded with the range data and pro-
pose a fully automatic registration technique using 2D-image features with intrinsic scale information for finding
corresponding points on the 3D-views. In our approach, the fine registration of two range images is performed
by first aligning the feature points themselves, followed by a so-called constrained-domain alignment step. In the
latter, rather than feature points, we consider feature surface elements that are derived using the scale informa-
tion inherently established with the 2D-features. The global registration error is minimized using graph relaxation
techniques to mediate the transformations required to align the multiple range images. We demonstrate the power
and feasibility of our method by a case-study in the cultural heritage domain.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications I.4.1 [Image
Processing And Computer Vision]: Digitization and Image Capture

1. Introduction

Due to its accuracy, inexpensiveness, and non-intrusiveness,
digitizing 3D-Objects with Laser-Range Scanners is the
method of choice for many applications, ranging from the
automotive over the entertainment industries to creative de-
sign and cultural heritage applications. However, to produce
a complete surface of the object to be digitized, the measure-
ment of a single view seldom provides sufficient data, such
that multiple, often dozens of views have to be registered.
Registering two views of an object is usually a two-stage
process: First, an initial transformation is estimated, which,
in turn, is used as a starting point for the second stage, the
fine registration.

The fully automatic registration of multiple range im-
ages is still an area of active research in computer graphics.
State-of-the-art systems often still rely on user-interaction to
determine the initial transformation [CCG∗03], making the
pre-registration a tedious and time-consuming task. To over-
come this drawback, in some applications additional infor-
mation available from the scanning process can be exploited
to derive the initial transformation: For instance, the relative
viewpoint position might be known, e.g. from tracking the
scanner position or by using a turntable on which the object

Figure 1: Range and colour image acquired with a laser range
scanner (in this case a Minolta Vivid 900)

to be digitized was situated. Although direct and convenient,
this is not always feasible due to the nature of the object, its
dimensions or location. Therefore, a common approach is to
derive an initial transformation by aligning a small set of cor-
responding feature points in the range images. These feature
points are either found as local geometric features on the sur-
face of the object or by placing additional markers on or in
the surrounding of the object. In the former case, robustness
of the feature detection is of vital importance, whereas in
the latter, special care has to be taken in the placement of the
markers [Akc03], as markers should be visible from as many
viewpoints as possible whilst casting preferably no shadows
on the object. Aside from the inconvenience, the placement
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of markers on the object is infeasible in cultural heritage ap-
plications, where artifacts to be digitized often must not be
touched at all. The need for close-up scans for detailed and
spacious objects also diminishes the use of markers placed
in the surrounding (see figs 1 and 8).

On the other hand, scanning devices commonly capture
not only geometry but also color information or light inten-
sities for the scene (cf. figure 1). These intensity images are
far less subject to noise and as opposed to range images do
not exhibit missing values. As a consequence, feature points
extracted from these images are more robust than those ex-
tracted from range images, making them more suitable for
correspondence computation. In addition to the robustness,
expressiveness and mere number of the features available in
the 2D-image information, the key to the ensuing registra-
tion steps lies in the fact that the features used in this paper
provide scales – an indication of in how far is the surround-
ing of the feature also part of the feature. It is this that al-
lows us to define the feature surface elements and thereby
efficiently derive a high-quality registration.

After solving the pairwise registration procedure, the reg-
istration problem has to be solved for the full set of available
range images. This becomes necessary as the range scans
usually overlap with a number of neighbouring range im-
ages. In real-world data sets, the range images will be noisy
and erroneous due to material properties (colour, shininess,
transparency, etc.), lighting situation, and object dimensions
(due to a limited depth of focus in the optical system of
the scanner). For each neighbour the bilateral registration
will therefore result in more or less differing minimizing po-
sitions. This non-conformity necessitates mediation among
the respective, bilaterally optimal, transformations. We con-
sider the multi-view registration as a directed cost graph,
where the range images constitute the nodes and two nodes
are connected by an edge iff the corresponding range images
overlap well (cf. sections 3 and 5 for details).

In this paper we present a fully automatic registration ap-
proach based on 2D-image feature correspondences incor-
porating the following key features:

• No need for special markers
• Robustness with respect to noise and missing geometry

data
• Automatic incorporation of additional markers if available

Our registration algorithm is incremental in the sense that
additional range images can be incorporated into a set of al-
ready registered range images very efficiently. The feature
detection is performed unilaterally (constant time), whereas
the feature matching has to be done with respect to each of
the 2D-images in the given set (linear). Finally, the graph
relaxation procedure is performed on the full set of range
images. Results from previous range image integration can
nonetheless be exploited, as extending an already relaxed
graph with additional range images converges very fast.

2. Previous Work

2.1. Pairwise Registration

One of the most popular registration methods in literature is
the iterative closest pair algorithm (ICP) by Besl and McKay
[BM92]. It iteratively searches for closest point pairs in two
surface patches and optimizes the transformation to mini-
mize the distances between these points. However, since this
algorithm implicitly assumes that closest points on different
patches correspond to each other, it only converges toward
a reasonable solution if the patches are roughly pre-aligned.
In order to overcome this drawback, various improvements
and variants of the original ICP were proposed. This includes
verification of closest point pairs by additional attributes like
colour or surface normal which is sometimes referred to
as the iterative closest compatible point algorithm (ICCP).
Furthermore, more sophisticated optimization schemes were
proposed as for example simulated annealing or evolution-
ary algorithms. [RFL02] and [RL01] provide good surveys
over these ICP variants. Although these measures improve
the convergence properties of the original ICP algorithms
and achieve high registration accuracy, they still do not al-
low for a registration of several completely unaligned sur-
face patches in reasonable time.

To automatize the registration process, several authors
proposed to detect special surface feature points on the
surface patches [FH86] [SM92] [YF02] [SLW02] [JH97]
[SA01] [HHI01] [KPH02] [FA96] [AF97] [WG02] [TB99]
[KPJR91]. Constraining the search for correspondences to
these features can accelerate the registration process drasti-
cally and automatic registration becomes possible. Feature-
based approaches primarily differ in their definition of fea-
ture points and in the way they are matched. A common
drawback of these approaches is that they rely on a sufficient
number of prominent or salient features in the geometry. Es-
pecially in the presence of noise or missing values this is
often problematic.

To circumvent this problem Chen et al. [CHC99] devel-
oped a different approach: for pairwise registration they pro-
pose a randomized selection of control points on one of
the surface patches followed by an exhaustive rigidly con-
strained search for corresponding points on the other sur-
face. Robertson and Fisher [RF02] also proposed an ex-
haustive search for automatic registration. Instead of search-
ing for correspondences, they use a parallel search in pose
space based on evolutionary algorithms. While the method
of Chen et al. is sensitive to noise, the method of Robertson
and Fisher requires relatively large overlaps in the surface
patches in order to converge to the correct solution. Fur-
thermore, both methods require substantial computational
efforts.

Considering the desirable properties of image feature de-
tection, it is not surprising that the idea of exploiting 2D-
features for 3D-registration problems is not new. In [Rot99]
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Figure 2: Photograph of a medieval rood-screen that was scanned and reconstructed using the approach presented in this paper

Roth uses the popular Harris feature detector [HS88] to ex-
tract features from a intensity image that is aligned with a
range image. Because of the large number of detected fea-
ture points, the author refrained from considering all pos-
sible feature point pairs for matching. Instead, the feature
points of each surface in three space are tetrahedrized in-
dividually using a Delaunay tetrahedrization and the search
for correspondences is restricted to the faces of these tetra-
hedrizations. Two triangles are considered a match if their
edge lengths match. However, due to occlusion and missing
values in the range images, feature points might be present
in only one of the two range images and the Delaunay tetra-
hedrizations become inconsistent. Therefore, the method is
limited to relatively small view point changes and range im-
ages with only few missing values.

Another approach related to our method was presented by
DePiero in [DeP03]. While his method is not based on image
features, it detects KLT features [LK81] in range images and
maintains these features together with a graph structure in a
database. Targeting at the fast registration of range image se-
quences, the method predicts the sensor movement from the
previous images and uses this prediction to project a sub-
graph from the database into the next range image in the
sequence. This predicted subgraph is then fitted against the
detected features, and corresponding features are identified
by a graph matching algorithm. While this approach can reg-
ister a range image sequence at rates of up to 10Hz on cur-
rent PC hardware, it relies on the viewpoint changes between
subsequent images to be comparatively small.

2.2. Multiview Registration

If more than two range images are to be registered a sim-
ple solution is the incremental approach taken in [BM92]

[MSY96] and [SG00]: From the set of unregistered patches
U two patches are chosen and registered using a pairwise
registration method. The two registered patches are then
merged into a single patch which is put back into U . This
process is repeated until the set U contains only a single sur-
face patch. This incremental approach suffers from the accu-
mulation of local registration errors leading to possibly large
global registration errors.

Therefore, several authors proposed to solve for the posi-
tion and orientation of all patches simultaneously [BSGL96]
[EFF98] [BM94] [SB97]. All of these approaches minimize
the sum of squared distances between closest point pairs
or the distance between a point and the tangent plane to
the corresponding point as suggested in [CM92]. As cor-
respondences are iteratively recomputed during the opti-
mization, these methods are computationally expensive. To
tackle this drawback, [Pul99] proposes using a generaliza-
tion of the so-called concrete-mate approach, where point-
point correspondences remain fixed during the multiview
alignment. Also, [CS99] discusses methods that solve the
multiview registration problem in case of known point cor-
respondences. In combination with a feature point detection
and matching scheme, these approaches can also be used for
automatic multiview registration. However, their sensitivity
to noise especially in cases, where only a small number of
feature points can be found and matched, lead us to propose
a hybrid approach incorporating both feature point and clos-
est point correspondences.

3. Feature Detection and Matching

Finding geometric features in range images is a hard task for
several reasons. While 3D-feature detection is already a dif-
ficult task in closed object representations, situation worsens
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Figure 3: Two range images (green and blue) with matching fea-
ture point and scale. Only inside the scale-induced feature surface
element (red circle) the two range images can robustly be expected
to contain corresponding parts of the object.

in case of surface patches acquired digitizing real-life ob-
jects as only parts of the object’s surface are visible due to
occlusion and limited field-of-view. Moreover, the fact that
3D-descriptors are incapable of distinguishing local regions
on surfaces of constant curvature (e.g. on planes, cylinders
and balls) makes this approach infeasible for many objects,
in particular if they are geometrically highly self similar or
rotationally symmetric.

On the other hand, finding and matching features in 2D-
images is a well-researched topic, and algorithms robustly
detecting features that are insensitive to brightness changes,
scaling or local occlusions exist.

In a recent survey [MS03] Mikolajczyk and Schmid com-
pared the performance of several local feature descriptors.
In particular they examined the robustness of the features
with respect to noise, lighting and view point changes up to
60 degrees. They found the Scale Invariant Feature Trans-
form (SIFT) which was developed by Lowe[Low99] (see
also [Low04]) based on earlier work by Lindeberg[Lin93]
to perform best. As a Scale-Space based method SIFT de-
tects features with a scale parameter that reflects the spatial
extension of its defining image neighbourhood. This scale
property is of vital importance for our method since it allows
to robustly estimate a 3D-position for each detected image
feature.

While a 3D-feature position from a 2D-feature could eas-
ily be derived using the one-to-one correspondence between
the pixels in the intensity image and the depth values in the
range image usually established during the data acquisition
process, this is not advisable, as the resulting 3D-point is
sensitive to noise and small feature deviations. Furthermore,

Figure 4: 3D-feature surface elements are derived from scale-
equipped 2D-features.

feature points in 2D-images might correspond to places on
the 3D-object where no geometry data is available e.g. holes,
dark or reflective spots on the object’s surface. Therefore in-
stead of using a single 3D-point (the direct corresponding
point to the 2D-feature point) as feature, we use the set of
all points corresponding to the image area determined by
the position and scale of the feature (see 4). We call these
sets feature surface elements to accent that they are indeed
a surface realization of the scale-equipped feature points.
Please note, that the similarity to the notion of surfels, i.e.
surface points equipped with normals, is not accidently: Sur-
fels implicitly store a local first-order approximation of the
neighbouring surface. Analogously, feature surface elements
represent a sampling of the neighbourhood. Unlike surfels
though, the feature surface elements represent a region on
the surface with a well-defined size known from the 2D-
image features.

According to the above definition, we define a feature
point as the center of gravity of the respective feature sur-
face element and denote by Cικ for any pair (ι,κ) of range
images the set of corresponding feature points (see fig. 3).

Although the SIFT method already provides good match-
ing results, false positive matches are nevertheless possible.
Since the subsequent registration steps are sensitive to such
false correspondences, we apply an additional filtering to
the matches based on the RANSAC method [FB81]. A set
of matching features in a pair of images can be validated
as soon as the 3D-positions of the features have been de-
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Figure 5: In the first registration stage, only the centres of the fea-
ture surface elements are aligned (top). The next stage aligns all
available corresponding points pairs contained in the feature sur-
face elements (bottom).

termined by checking their conformity with respect to rigid
transformations. Since it is computationally expensive to ac-
tually compute the largest conformal set of matching fea-
tures (maximum clique), the RANSAC method selects a set
of three feature pairs randomly and computes its support, i.e.
the set of all feature pairs conforming to the implied trans-
formation. A support set is rejected if it is below a certain
size (for our results we used a value of 6). This allows us to
remove unreliable correspondences, since large sets of false,
yet conforming matches are extremely improbable.

Although the 3D-feature point positions are stable with
respect to noise, the sampling of a feature surface element
in different images is usually not consistent. In addition to
missing range values due to reflective spots, shadowing etc.,
this might lead to slight deviations in their 3D-positions.
While such deviated features can be filtered out using the
RANSAC approach to improve the registration accuracy, we
tolerate these deviations to a certain extent to increase the
number of conformal matches. This constitutes a trade-off
between the connectivity in the registration graph (see sec-
tion 5) and the accuracy. An additional constrained domain
alignment step described in section 4 compensates for this
tolerated feature deviation.

4. Pairwise Registration

From the algorithm described in the previous section, we
have for any range image ι a set Pι of scale-equipped feature
points pι

i , i = 1, . . . ,nι. Moreover, for any pair (ι,κ) of range
images we have a (possibly empty) set of correspondences

Cικ = {(i, j) | pι
i ∈ Pι and pκ

j ∈ Pκ corresponding}.

Figure 6: Detail View of the reconstructed angel using 17 range
images. Registration was performed on the feature points and the
feature surface elements only.

In this section, we describe a two-stage registration proce-
dure for a pair (ι,κ) with non-empty correspondence set Cικ

(see figure 5).

Coarse Registration

The first registration step consists simply of aligning the
point sets Pι and Pκ in a least squares sense, i.e. among the
set of all rigid transformations we’re looking for the solution
to the local minimization problem

Tικ = argmin
T

ε(T · ι,κ), (1)

where the registration error ε is defined as

ε(ι,κ) = ∑
(i, j)∈Cικ

d2(pι
i ,p

κ
j ). (2)

Since correspondences are known and fixed, this is a non-
iterative procedure (in our implementation solved using the
method described in [Hor87]), leading fast and efficiently to
an initial registration for ι and κ. However, the alignment
based solely on the feature points accounts only for a frac-
tion of the information available in the range images. (Typi-
cally, the number of feature points is in the order of dozens
compared to the several hundred thousands of data points.)
To compensate for the errors induced in the feature point
computation as described in the previous section a second
registration step is performed.

Fine Registration

Basically, it would be possible now to register the pre-
aligned pair of range images applying one of the many vari-
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Figure 7: Detail of the registered rood-screen before and after relaxation. In the left picture, registration errors are noticeable in the area of
the chin, the cheek and in the neck.

ants of the ICP-algorithm. They have proven to lead to ex-
cellent registration results for good starting positions. Unfor-
tunately, by our experience, they are computationally non-
trivial and imperilled of false correspondence computation,
which might lead to slow convergence and, more impor-
tantly, is susceptible to run into local minima. We tackle
these problems by restricting the domain for the correspon-
dence computation to regions of the object that are known
to correspond: From the feature detection in the 2D-images,
we know that the feature surface elements introduced in sec-
tion 3 constitute corresponding parts of the surface.

To align the feature surface elements, we perform an ICP
on constrained domains: For all pairs (i, j) ∈ Cικ we find
new correspondences as closest point pairs in the according
sets of 3D-points. These enhanced correspondence sets are
then aligned using standard ICP-techniques. Figure 6 shows
a detail of the reconstructed rood-screen after the two-stage
registration process.

We would like to stress, that the 2D-feature matching pro-
cedure does not take into account the distribution of the fea-
ture points over the range images. In cases where the bound-
ing box of the feature surface elements is very small com-
pared to the bounding box of the range image itself, the two
registration steps presented above might leave a registration
error noticeable in regions far from the feature surface ele-
ments. In these cases, as a consequence of the high-quality
pre-registration, a final ICP stage performed on the full data
will resolve the remaining inconsistency. In all our experi-
ments, though, (and in all the pictures presented in this pa-

per), the fine registration by feature surface element align-
ment proved to be sufficient.

5. Multiview Registration

For real-life, erroneous data, the bilaterally optimal transfor-
mations will be non-conforming, i.e. the optimal transfor-
mation of a range image with respect to one other range im-
age will not be optimal with respect to the remaining range
images. To mediate between the competing transformations,
we solve in this section the multiview registration problem
with a graph relaxation algorithm.

5.1. Graph Setup

Let G be a directed graph (N ,E). The nodes N represent
the set of range images. An edge e = (ι,κ) is element of E
iff the correspondence set Cικ is non-empty. To every edge
e = (ι,κ), we assign a rigid transformation T (e) = T (ι,κ)
that is initialized to be the solution of the bilateral align-
ment process of the two adjacent range images. Addition-
ally, we store with every edge the registration error ε(e) =
ε(ι,κ) induced by this initial registration. The antisymmetry
T (κ, ι) = T (ι,κ)−1 in the edge attributes is the reason why
G needs to be a directed graph – in all other respects G can
be treated as undirected.

The task is now to find for every node ι a transformation
Tι such that the global registration error

Σ := ∑
e∈E

ε(e) (3)

is minimal. In other words: Let T be the vector (T1, . . . ,Tn)
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Figure 8: Registered range images. 84 Patches, 20 million points. Note that many patches cover exclusively the interior of the object, a fact
that would make the exploitation of synthetic marker points attached in the surrounding infeasible.

of rigid transformations, then we’re looking for the solution
to the global minimization problem

T = argmin ∑
(ι,κ)∈E

ε(Tιι,Tκκ). (4)

5.2. Graph Collapse

Clearly, problem (4) has a degeneracy in the sense that the
error Σ is invariant under any rigid Transformation Q:

Σ(T) = Σ(QT) = Σ(QT1, . . . ,QTN)

Therefore, we choose an arbitrary node ι0 s.t. Tι0 is the iden-
tity transformation. An initialization Tι for all nodes ι can
then be found by computing a minimal spanning tree of G
and combining the transformations from ι0 to ι along the
paths in the spanning tree (cf. fig. 9). For numerical reasons

Figure 9: The registration graph and a corresponding spanning
tree. Setting T3 to be the identity would give, e.g., T1 = T (1,3), and
T5 = T (4,5)◦T (4,3) as initial transformations.

it is beneficial to choose the root node ι0 s.t. the average path
length from ι0 to all remaining nodes is minimal, otherwise
the choice is arbitrary.

5.3. Relaxation

To resolve the non-conforming transformations we iterate
over the graph and re-align each node with respect to the ad-
jacent nodes. Again, this is a two-stage procedure: First, the
relaxation is performed taking into account the feature points
only, whereas in the second stage, the correspondences in the
feature surface elements are accounted for.

In the literature, different approaches have been dis-
cussed concerning the recomputation of correspondences in-
between iterations. Recomputing the correspondences be-
tween two iterations is not only computationally expensive,
it might also exhibit slow convergence speed. This is due
to the fact that changing the correspondences actually con-
stantly changes the function to minimize. Moreover, since
thresholding is applied during correspondence computation,
the registration graph might even get disconnected in cases
where subgraphs of the graph are connected only by very
few cross-edges. Keeping the correspondences fixed during
the whole relaxation, on the other hand, is sensitive to noise
and prone to run into local minima. Hence, we pursuit a hy-
brid approach that keeps correspondences fixed during the
relaxation and afterwards repeats the process with recom-
puted correspondences. In pseudo-code the relaxation reads:
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Figure 10: Right: Detail photograph of the rood-screen. Left: Reconstruction of the detail; 17 range images were used, no global fine
registration step applied. Note that the images were taken from a slightly different viewpoint. The colour difference mainly results from using a
flashlight for the photography

relax(G,stage)
while Σ improves do

if stage > 1 then
recompute correspondences;

end if
while Σ improves do

for all ι ∈N do
align ι with adjacent nodes;

end for
evaluate Σ;

end while
evaluate Σ;

end while

Finding corresponding pairs as closest points results in
asymmetric correspondence sets, i.e. Cικ 6= Cκι. This is ap-
propriate if one range image has to be aligned to another
(since this relationship, too, is asymmetric). In multiview-
registration, however, range images have to be aligned mu-
tually. Otherwise, for an edge (ι,κ), a next relaxation step
(where ι is the current node to be re-aligned) might sim-
ply try to undo the transformation just achieved in the
last step (where κ was re-aligned), leading to slow conver-
gence. Hence, we define the correspondence set for all edges
(ι,κ) ∈ E to be the union of the one-sided correspondence
sets Cικ and Cκι. Obviously, this is not necessary in the first
relaxation stage, as here, the correspondence sets consists
only of the feature points themselves and, therefore, is sym-
metric by construction.

Also, in all our experiments we found it sufficient to per-
form during the pairwise registration the first stage only, i.e.
we omit the alignment of the feature surface elements in the
bilateral case and apply both stages not until the relaxation
of the registration graph.

6. Results and Conclusions

Figure 8 shows the 84 patches that were registered to re-
construct the rood-screen depicted in figure 2 using the two
registration steps described in sections 4 and 5. Figures 10,
and 11 show point renderings of the the reconstructed rood-
screen. For the given examples, the complete registration
process from feature detection and matching to the graph
relaxation based on the feature surface elements took less
than an hour on standard PC hardware and was performed
without any user-interaction.

In this paper we presented a novel fully automatic reg-
istration algorithm for multiple range images. The key to
our approach is the use of robust and expressive image fea-
tures that additionally contain scale information. This exten-
sive feature information allows us to perform a two-stage
registration process in which a feature-point alignment pre-
cedes an alignment of feature surface elements. The latter
is basically a constrained-domain ICP where the domains
are consistently derived from the scales established in the
2D-feature detection and matching process. This approach
scales well to large data sets and avoids local minima. The
thresholds for the correspondence computation in the second
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Figure 11: Reconstruction of the complete rood-screen, point rendered with per vertex-colours

registration stage are naturally derived from the registration
error of the foregoing stage.

Our approach is very simple in concept, but profits nat-
urally from robust feature point correspondences. In partic-
ular, feature detection and matching on basis of 2D-images
gives access to 3D-feature points at places infeasible using
only the 3D-data, e.g. holes in the object, or spots on the
object that do not deliver a 3D-point, but can easily and ro-
bustly be identified on the corresponding 2D-image. Thus
our approach is robust with respect to missing data in the
range images due to the object geometry, material properties,
or the scanning process itself, that were a major challenge in
previous registration approaches. Another important benefit
of exploiting image-based features for our registration pro-
cedure is that even surface patches that are geometrically in-
distinguishable can be robustly registered. Thus, rotationally
symmetric objects can be reconstructed as well as objects
that are highly self-similar if there is image information that
can be evaluated.

Our registration algorithm is independent of additional
user-defined marker points – a point that is vital for cultural
heritage applications as artifacts often must not be touched
at all. On the other hand, if available, these marker points are
naturally included in the registration process.
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