
Image and 3D-Object Editing with Precisely Specified Editing Regions

Gerhard Bendels ∗

Computer Graphics
University of Bonn, Germany

Reinhard Klein †

Computer Graphics
University of Bonn, Germany

Andreas Schilling ‡

Media Informatics
Hochschule der Medien, Stuttgart, Germany

Abstract

In this paper we present a new approach to the edit-
ing of polygons, images and triangulated surface
meshes featuring the exact specification of the area
that is being edited, the area that remains unchanged
and an area that is transformed rigidly. This allows
intuitive editing of arbitrary triangle meshes as well
as 2D-images. Furthermore, the shape of the de-
formed area can be modified interactively by ma-
nipulating a simple parametric curve. The key con-
tributions of this paper are that we include not only
translations and rotations in our editing paradigm
but the whole spectrum of affine transformations.
We include a refinement approach to allow for sharp
feature edits even in sparsely sampled areas. In spite
of these features the algorithm is very fast and sim-
ple and can easily be generalized to the case of tetra-
hedrized volumes.

1 Introduction and previous work

The growing availability of low-cost scanning de-
vices and the advances in reconstruction techniques
deliver a huge collection of 3D-Models on-hand in
various data bases, e.g. the world wide web. At
the same time, the focus of much research shifts
from design methodologies fulfilling industry im-
posed requirements like exact and provable geomet-
ric properties (as in [18, 12]) to the development
of simple and intuitive design tools, that are re-
quired in numerous computer graphics applications
like the film industry, computer games, etc.

A very prominent and well-known example of

∗bendels@cs.uni-bonn.de
†rk@cs.uni-bonn.de
‡schilling@uni-tuebingen.de

modelling paradigms are the implicit deformations
where the objects are embedded in a space. The
warping of this space causes a corresponding de-
formation of the object. According to the most
popular such approach called Free Form Deforma-
tions (FFD) [4, 40], the surrounding space is defined
as a multidimensional spline. This technique has
been further improved and generalized [15], more-
over, it was adapted to generate animations by e.g.
[15, 17]. The main advantage of these methods is
that they enable a deformation that is independent
of the complexity of the object being manipulated.
However, as pointed out in [19], the placement and
control of the lattice defining the deformation is
non-trivial. The improvements of [19, 20] remedied
these problems for the case of a single edit.

The classical NURBS modelling approach [18]
also falls into the category of implicit modelling. It
reflects the idea of imposing a control mesh directly
on the surface of the object, the desired modelling
effect is then achieved by modifying the control
points of this mesh. However, since there are few
degrees of freedom in determining the scale of an
edit and the topology of the control mesh, working
with NURBS requires much expertise and is time
intensive.

The algorithmic generalization of piecewise
polynomial representations are the subdivision sur-
faces [13, 12], where a smooth surface is generated
by iterative refinement of a control mesh according
to certain subdivision rules. Since subdivision sur-
faces essentially comprise a representation of an ob-
ject on different levels of scale, they may be utilized
as a basis for Multiresolution Mesh Editing (MME)
[45]. The idea of multiresolution editing is to use
different levels of detail of the object to perform ed-
its on different scales: Detail edits are performed

VMV 2003 Munich, Germany, November 19–21, 2003



on finer meshes and large scale edits on coarser
meshes representing the same object. Saving the
finer meshes as details with respect to the coarser
meshes provides for detail preservation during large
scale edits. Unfortunately, since the one-ring of the
edited vertex defines the region of influence (ROI)
of an edit, the subject of the edit and the ROI are
completely connectivity-defined and cannot be cho-
sen arbitrarily. Kobbelt et al. [29, 30] provided a
solution to this problem by utilizing a hierarchy of
scales in terms of smoothness. The levels of de-
tail are generated by a hierarchical mesh smoothing
scheme. During the editing process, the area of in-
fluence of the editing operation can be specified e.g.
by defining two boundary curves that are drawn on
the triangle mesh, a feature that is indispensable for
intuitive editing. The scale of the edit is implicitly
defined by the specification of the region borders.
Lacking appropriate basis functions, Kobbelt et al.
modified the deformable area by an energy mini-
mization technique in the spirit of Welch and Witkin
[42]. The shape of the resulting surface mesh is pre-
determined by this technique.

Another solution was presented by Lee [32]. He
allows a simple connected area of the mesh to be
defined as editing area. This area is embedded onto
a rectangle of the 2D-plane using harmonic maps
[16]. In this way he reduces the 3D editing to B-
Spline surface manipulation in 2D. Unfortunately,
in addition to the problems with calculating the
harmonic maps, the deformation of an arbitrarily
shaped area to a rectangle in many cases misleads
intuition during editing.

Despite the shortcomings – effectively digitizing
and interactive display is still a challenge – implicit
modelling was subject to extensive research in re-
cent years. Distance surfaces like blobs [6], meta-
balls [9], soft objects [8], and convolution surfaces
[7] are popular in Computer Animation since the
geometric ”skeleton”, with respect to which they
are defined, can be used as an internal structure
to control the animation [10] and even for LOD-
representations [11, 2]. Several methods have been
presented to tackle the so-called ”unwanted blend-
ing problem”, e.g. [3]. Furthermore, the ubiqui-
tous availability of inside-outside information al-
lows for efficient collision detection and response
[38] and accounts for the development of intuitive
haptic editing interfaces, e.g. [21, 22].

While the methods mentioned so far mainly ap-

ply to modifying existing shapes, SKETCH [44],
SKIN [35] and TEDDY [23], which were later ex-
tended in [25], are among those methods generat-
ing models from scratch. Modifying shapes in these
approaches is realized using a method called overs-
ketching, i.e. drawing parts of the silhouette of the
shape anew.

Although triangle meshes are still the key 3D
object representation in Computer Graphics due to
their extensive hardware support, the manipulation
of unstructured point data gained more and more re-
search attention in recent years. Zwicker et al. [46]
generalize standard 2D image editing techniques to
3D, reconstructing well-known pixel editing tools.
Of particular relevance for this paper is the work of
Pauly et al. presented most recently in [39]. Here,
multiresolution results are transferred to the case
of point-sampled geometry. In extension of a pre-
liminary idea presented at [27], shapes are modi-
fied by defining a so-called zero-region and a one-
region. The one-region undergoes the full user-
defined translation or rotation rigidly, whereas the
zero-region remains fixed and a pre-defined blend-
ing function is used to create a smooth transition be-
tween the two regions. Similar in concept, Llamas
et al. [33] let users define transformations for sin-
gle handle vertices on the surface. These transfor-
mations are interpreted as a time-dependent screw
motion. The handle vertices undergo the full screw
motion, while vertices in the neighborhood move
along an identic path but not to the full extent. The
required time parameter for every vertex on the sur-
face is also computed using a pre-defined blending
function.

In contrast to these approaches we solve the prob-
lem of smoothly propagating the handle transfor-
mation to the neighborhood by applying recent ad-
vances [1] in the linear combination of transforma-
tions. This allows for the whole spectrum of affine
transformation to be smoothly applied in the edit-
ing region in a consistent and analytic way. We uti-
lize geodesic distances on the mesh (unavailable for
point clouds) to compute the blending function val-
ues.

In [39] a twofold refinement strategy is proposed,
in order to be able to reflect sharp features gener-
ated by CSG operations, and also to tackle insuffi-
cient surface sampling caused by extensive surface
stretch. These refinement methodologies rely on a
sufficiently high sampling rate before the edit starts,

666



so that point positions can be interpolated linearly,
leaving these strategies inapplicable in the case
of much more sparsely sampled triangle meshes.
Therefore, we use a refinement strategy that allows
fine detail edits even in sparsely triangulated areas,
following the idea from [5].

Moreover, we show by several examples that our
editing scheme is not only applicable to 3D-Meshes
but also constitutes a powerful ingredient of a 2D
image editing toolbox.

In section 2 we briefly present the general ideas
and definitions for the case of triangle meshes. The
key to the new method is the propagation of the
transformation to the neighborhood of the handle.
This is subject of section 3. The definition and com-
putation of appropriate distance fields in 3D is dis-
cussed in section 4.

2 The basic idea

Figure 1: Partition of a polyline (top) and a triangle
mesh (bottom) into handle (dark blue), deformable
(dashed green), and fixed area.

Similar to the concept presented in [27] and [39],
the first step of the algorithm is to split the object to
be edited into disjoint parts, defined by its borders
that are drawn onto the triangle mesh using a spe-
cial 3D-cursor: The fixed area and the handle, see
Fig. 1. The former consists of all vertices in the tri-
angle mesh whose position remains unchanged dur-
ing editing, whereas the latter consists of all ver-
tices that undergo the same transformation, thereby
defining an area that is transformed rigidly. The de-
formed area consists of the remaining vertices be-

tween the stiff area and the handle.1

Figure 2: Transformation of a simple polygonal
curve. Vertices v4 to v8 form the handle and un-
dergo the full transformation A, whereas vertices
v0 to v2 and v10 to v13 remain fixed.

The basic idea of the editing algorithm can best
be explained in the case of a onedimensional polyg-
onal curve, see Fig. 2: If the handle is moved (by
applying the transformation A), we have to decide
what happens to the vertices in the deformed area.
We solve the problem by applying the scaled trans-
formation αi �A to the vertices vi of the deformed
area (see section 3), with the property that for α = 0
the resulting transformation is the identity and for
α = 1 the transformation is A itself.

In our setting, αi ∈ [0, 1] depends on the dis-
tance di,fixed of the the regarded vertex vi to the
fixed area and the distance di,handle to the handle.
Generally, if the vertex vi is close to the fixed area
then αi is close to 0, and close to 1 if vi is close to
the handle.

Of course, this basic editing idea is not restricted
to polygonal curves but it can also be applied to im-
ages, triangle meshes, and control nets of higher or-
der surfaces (this way, groups of control points can
be transformed and deformed in an intuitive man-
ner) as well, given that appropriate distances from
the respective primitives to the corresponding bor-
ders on the object can be calculated (see section 4).

3 Transformations

A transformation matrix A can intuitively be de-
fined for the handle vertices using a 3D-input de-
vice or a 2D-mouse by first specifying the origin of
the coordinate system of the transformation. Then
a point on the handle is picked and can be dragged,
see Figure 8 for an example.

1We expect the handle to be completely contained in the com-
plement of the fixed area.

666



This way, the transformation is defined explicitly
for the handle vertices only. For the vertices in the
deformed region, the transformation has to be de-
termined. In order to achieve smooth editing oper-
ations, we want the vertices in the deformed region
to be transformed by a scalar power αi � A of the
transformation A defined for the handle.

As stated above, for α = 0 we want the result-
ing transformation to be the identity, for α = 1 the
transformation should be A, and in the particular
case α = 1

2
, i.e. ’half’ of A, we want the resulting

transformation to have the property that, being ap-
plied twice, the result is the original transformation.

Defining the scalar power of a transformation A
is straightforward in the case of translations, rota-
tions, and scaling. (If the latter is defined by a
scale-matrix with diagonal entries d1, d2, d3, then
diag(dα

1 , dα
2 , dα

3 ) can be used.)
In contrast, interpolating transformations in the

case of an arbitrary transformation is non-trivial. In
[33], this problem is tackled by computing a time-
dependent minimal screw motion. Applying 1

2
�

A is then interpreted as following the exact same
screw motion half way.

Instead, we follow the approach of Alexa [1],
who used the exponential and logarithmic function
to define2

α � A = eα log A.

For a single editing operation the logarithm
log A of the transformation matrix A has to
be computed only once, but the exponentiation
ef(dout,din) log A has to be performed for every ver-
tex in the deformed area. As reported by Alexa
[1] the exponentiation is about 10 times faster than
the computation of the logarithm and takes about
3 · 10−6 sec on a 1GHz Athlon. Therefore, interac-
tive frame-rates are achievable even for huge num-
bers of vertices in the deformed area.

4 The distance field

As in [27] we choose α to be a function f : [0, 1] →
[0, 1] of the ratio

di,fixed

di,fixed + di,handle
.

2The logarithm is well-defined for transformation matrices, as
long as the transformation contains no reflection. See [1] for de-
tails.

Figure 3: (a) Computation of α using Euclidean dis-
tances (a), and arc length parametrization (b). Note
that in contrast to (b), α does not grow monoton-
ically in (a) when going from vertex to vertex to-
wards the handle, leading to a different propagation
of the transformation defined for the handle (trans-
lation in x-direction).

This way, the distance fields defined by the border
of the handle and the border of the fixed area deliver
us a natural parameterization of the deformed area.
The function f defines the resulting shape of the de-
formed area and is therefore called shape function.

Since the choice of a specific distance field has
a strong impact on the editing operations we con-
sider two different distance fields: The Euclidean
distance field defined over the Euclidean space and
the geodesic distance field defined on a polygon or
on the triangle mesh.

Using the efficient and ubiquitous Euclidean dis-
tance for editing meshes in 3D results in an editing
behavior that resembles in some way the classical
space deformation techniques [4, 40, 15, 19, 34],
with the important advantage that, with our ap-
proach, the edited area can exactly be defined on the
triangle mesh by defining the borders of fixed area
and handle. Furthermore, the problems of classical
space deformation techniques with a ”continuous”
connection between modified and fixed area can
easily be avoided by choosing appropriate shape
functions.

Using geodesic distances on the other hand al-
lows taking into account object surface properties
for the influence computation and leads to an edit-
ing behavior that resembles the well known spline
editing.

Although the distance field computation must be
performed only once at the beginning of each edit-
ing step, having fast algorithms to compute the Eu-
clidean as well as the geodesic distance field is cru-
cial for interactive editing.

666



4.1 Euclidean distances

For each vertex v, the Euclidean distances to the
handle h and the fixed area f are given by

dE(v, h) = min
i

(d(v, (vivi+1)) (1)

dE(v, f) = min
j

(d(v, (vjvj+1)) (2)

where (vivi+1) is the line segment between ver-
tex vi and vi+1 on the border of the handle and
(vjvj+1) is the line segment between vertex vj and
vj+1 on the border of the fixed area.

Although the computation is not complicated, it
is expensive for larger border polygons as the com-
plexity of a simple algorithm grows linearly with
the size of the border polygons. To accelerate the
computation, a spatial search data structure support-
ing nearest simplex queries is necessary. This data
structure must be dynamic as in each editing step
new border polygons are defined. We use a regu-
lar grid for the spatial search because it optimally
performs in static and dynamic environments [43]
and is easy to implement. In each grid cell we store
a list of the border edges partially or completely
contained in the cell. The edges are inserted into
the grid by using a simple incremental algorithm
which traces the penetrated cells along the edge. In
the beginning of the editing process we use a grid
with uniform edge length of twice the average edge
length of the model, such that each edge is in aver-
age contained in one or two cells allowing for fast
insertion and removal. While editing continues we
keep track of the decreasing average edge length
and refine the grid if necessary.

In the case of images we exploit graphics hard-
ware [28, 24] to compute the Euclidean distance
field, which in this case coincides with the geodesic
one. The basic idea in this context is to define ob-
jects, whose z-values are proportional to the dis-
tance we want to compute and render them into the
z-buffer. For a single vertex the needed object is a
cone, for a line two half-planes are used. As the
cones can only be approximated by polygons spe-
cial techniques are needed to keep the results con-
sistent. A simple solution to this problem is dis-
cussed in detail in [28].

4.2 Geodesic distances

For each vertex in the deformable area, the two
geodesic distances are defined by the length of the

Figure 4: A gap in the hippo mesh on the right
leads to unexpected distance values and therefore
to non-intuitive editing results, whereas the left side
hippo’s mesh is 2-manifold and the geodesic dis-
tance field behaves as supposed.

shortest path to the respective border.3 The algo-
rithms to compute geodesic distances elaborated so
far are usually formulated for convex polytopes,
which is sufficient for a number of applications.
The solution by Shahir and Schorr [41] yields an
algorithm with O(n3 log n) complexity; an impor-
tant additional result here is the proof that every
shortest path on a polyhedron unfolds to a straight
line on a plane. Mitchell et al. [36] showed an im-
proved O(n2 log n) running time algorithm work-
ing on non-convex polyhedra as well. The best al-
gorithm known to the authors for the case of non-
convex polyhedra was presented by Chen and Han
[14] with O(n2) time complexity.

For applications preferring speed over accuracy
in the calculation of the geodesic distances, approx-
imative algorithms are used. For the general case of
non-convex objects such algorithms were presented
in [31]. In this work we use an improved version of
the algorithm of Kimmel and Sethian [26] described
in [37].

5 The shape function

The shape function f : [0, 1] −→ [0, 1] can be
chosen arbitrarily. Generally, though, it is desirable
to postulate continuity properties of the shape func-
tion.

Although the properties of continuity and differ-
entiability are not directly applicable to polygons
it is obvious that if f is continuous, f(0) = 0
and f(1) = 1, the result of the deformation will
still be ”continuous” (in the limit of infinite subdi-
vision of the polygon, we could drop the quotes).
An analogue argument shows that if in addition to
the above conditions, f is differentiable, f ′(0) = 0

3Naturally, this definition is only useful if the mesh to be edited
is 2-manifold, see figure 4.

666



and f ′(1) = 0, we will get a ”differentiable” de-
formation result. The same is true for higher order
derivatives.

Compared to classical CAD approaches, e.g.
modelling with B-Spline-tensor product surfaces,
our approach has two main advantages:

1. the shape function can be chosen by the user
and is not implicitly given by the representa-
tion of the surface.

2. the area of influence of the shape function can
be freely defined and precisely specified by the
user. In the case of B-Spline-tensor product
surfaces this is not possible and in most cases
the user does not even know a priori the area
of influence.

As in [5] it is thus possible with our method to
perform editing with a two-step approach: In the
first step, the user moves the handle to the desired
location and in the second step he determines the
final shape of the deformable area by fine-tuning the
deformation function.

The one-dimensional shape function determines
the shape of the modified area everywhere around
the handle in the same way based on the ratio of the
two distance values. Sometimes it might be desir-
able to modify the deformed area around the handle
in different ways. To this end, a two-dimensional
shape function would be necessary. An easy solu-
tion would be to manually draw lines that connect
the two borders of the deformable area on which
the deformation functions can be specified. Be-
tween these lines the applied deformation function
is again interpolated according to the distances to
these lines.

6 Refinement

Figure 5: For some edits, the triangles might be too
large to represent fine details as defined by the shape
function (left). Result after subdivision (right).

If the deformation becomes too large, it can hap-
pen that even fine meshes finally contain very large
triangles. In this case, even with a smooth shape
function, no smooth resulting mesh is achievable.
Therefore we recursively apply Rivara Bisection
where required, i.e. we subdivide the large triangles
into four triangles by inserting the midpoints of its
three edges into the mesh, see figure 5. To com-
pute the position of the transformed new vertices
we must know their distances to the borders of the
fixed area and the handle. A simple linear interpola-
tion of the original distance values at the vertices of
a subdivided triangle is generally not sufficient. In-
stead, in [5] we propose approximating the geodesic
distance for every new vertex v on the edge (v0, v1)
from the distance values δ0 and δ1 of the two ad-
jacent vertices. To this end, a virtual origin for the
distance calculation is computed on the intersection
of the two spheres with radii δ0 and δ1 and centers
v0 and v1, resp. The distance to this virtual origin is
used as an approximation of the geodesic distance
value for v.

7 Interactive editing examples

The first example (Fig. 6 (a) and (b)) shows the
translation and the rotation ((c) and (d)) of a stiff
handle in an image. The parts of the image that are
to be modified can be specified precisely. Note that
all deformations can be performed interactively by
dragging with the mouse even on low-powered PCs.

Figures 7 and 8 show images that have been
captured during interactive editing of 3D triangle
meshes. See the captions below the figures for ex-
planations.

8 Conclusions and future work

We have presented a simple and efficient high level
editing algorithm for polygons, images and arbi-
trary triangle meshes in 3D. The two main features
of our algorithm are that we can specify an exact
area of influence for the editing process and that
the shape functions can be chosen arbitrarily. The
transformation specified for the handle region is
appropriately propagated into the deformable area
of the object using (depending on the actual edit-
ing circumstances) geodesic or Euclidean distances.
The scalar power of a transformation required for

666



this propagation is applied according to recent ad-
vances in the computation of linear combinations
of transformations. This allows for arbitrary trans-
formations to be smoothly interpolated in the de-
formed regions and is therefore superior to compa-
rable approaches. Moreover, we include a refine-
ment strategy into our editing environment to be
able to approximately model sharp features. This
could be further improved by taking into account
the shape function features as was done in [5]. We
therefore consider our algorithm a useful tool in an
editor’s toolbox.

In our current implementation the border lines
are restricted to the edges in the mesh. A straight-
forward extension of our algorithm is therefore to
allow arbitrary lines on the object surface. This
would lead to an even more flexible editing ap-
proach. Moreover, we are currently working on an
extension of the one-dimensional shape function to
two dimensions. The next step is an implementation
of the algorithm on tetrahedral meshes. The exten-
sion of the distance field calculations to this case is
also straightforward.

Acknowledgements

We would like to thank Holger Müller who im-
plemented the Curve- and Image-Editing algorithm
and Pavel Borodin and Michael Guthe who worked
on the 3D Mesh Editing algorithm.

References

[1] M. Alexa. Linear combination of transformation.
In Computer Graphics (SIGGRAPH 2002 Proceed-
ings), pages 380–387, July 2002.

[2] A. Angelidis and M.-P. Cani. Adaptive implicit mod-
eling using subdivision curves and surfaces as skele-
tons. In Solid Modelling and Applications. ACM,
June 2002. Saarbrucken, Germany.

[3] A. Angelidis, P. Jepp, and M.-P. Cani. Implicit mod-
eling with skeleton curves: Controlled blending in
contact situations. In Shape Modeling International.
ACM, IEEE Computer Society Press, 2002. Banff,
Alberta, Cananda.

[4] A. H. Barr. Global and local deformations of solid
primitives. In Proceedings of the 11th annual con-
ference on Computer graphics and interactive tech-
niques, pages 21–30, 1984.

[5] G. H. Bendels and R. Klein. Mesh forging: Edit-
ing of 3d-meshes using implicitly defined occluders.
In Proceedings of the Eurographics Symposium on
Geometry Processing 2003, June 2003.

[6] J. F. Blinn. A generalization of algebraic surface
drawing. ACM Transactions on Graphics (TOG),
1(3):235–256, 1982.

[7] J. Bloomenthal and K. Shoemake. Convolution sur-
faces. In Proceedings of the 18th annual conference
on Computer graphics and interactive techniques,
pages 251–256. ACM Press, 1991.

[8] J. Bloomenthal and B. Wyvill. Interactive techniques
for implicit modeling. Computer Graphics (1990
Symposium on Interactive 3D Graphics), 24(2):109–
116, 1990.

[9] B.Wyvill, C.McPheeters, and G.Wyvill. Data struc-
ture for soft objects. The Visual Computer, 2(4):227–
234, 1986.

[10] M.-P. Cani. Implicit representations in computer an-
imation : a compared study. In Proceedings of Im-
plicit Surface ’99, Sep 1999. Invited paper.

[11] M.-P. Cani and S. Hornus. Subdivision curve prim-
itives: a new solution for interactive implicit mod-
eling. In Shape Modelling International, Italy, May
2001.

[12] E. Catmull and J. H. Clark. Recursively generated
b-spline surfaces on arbitrary topological meshes.
Computer-Aided Design, 10:350–360, November
1978.

[13] G. Chaikin. Short note: An algorithm for high-speed
curve generation. Computer Graphics and Image
Processing, 3:346–349, 1974.

[14] J. Chen and Y. Han. Shortest paths on a polyhedron.
In Symposium on Computational Geometry, pages
360–369, 1990.

[15] S. Coquillart. Extended free-form deformation: a
sculpturing tool for 3d geometric modeling. In Pro-
ceedings of the 17th annual conference on Computer
graphics and interactive techniques, pages 187–196.
ACM Press, 1990.

[16] M. Eck, T. D. DeRose, T. Duchamp, H. Hoppe,
M. Lounsbery, and W. Stuetzle. Multiresolution
analysis of arbitrary meshes. In Proceedings of SIG-
GRAPH 95, Computer Graphics Proceedings, An-
nual Conference Series, pages 173–182, Aug. 1995.

[17] P. Faloutsos, M. van de Panne, and D. Terzopou-
los. Dynamic free-form deformations for animation
synthesis. IEEE Transactions on Visualization and
Computer Graphics, 3(3):201–214, /1997.

[18] G. Farin. Curves and Surfaces for Computer Aided
Geometric Design: A Practical Guide. Academic
Press Inc., 1993.

[19] W. M. Hsu, J. F. Hughes, and H. Kaufman. Direct
manipulation of free-form deformations. Computer
Graphics, 26(2):177–184, 1992.

[20] S.-M. Hu, H. Zhang, C.-L. Tai, and J.-G. Sun. Direct
manipulation of ffd: efficient explicit solutions and
decomposible multiple point constraints. The Visual
Computer, 17, 2001.

666



[21] J. Hua and H. Qin. Haptic sculpting of volumetric
implicit functions. In Proceedings of 9th Pacific on
Computer Graphics and Applications, pages 254–
264, 2001.

[22] J. Hua and H. Qin. Haptics-based volumetric mod-
eling using dynamic spline-based implicit functions.
In Proceedings of the 2002 IEEE symposium on Vol-
ume visualization and graphics, pages 55–64. IEEE
Press, 2002.

[23] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: a
sketching interface for 3d freeform design. In Pro-
ceedings of the 26th annual conference on Computer
graphics and interactive techniques, pages 409–416.
ACM Press/Addison-Wesley Publishing Co., 1999.

[24] K. H. III, T. Culver, J. Keyser, M. Lin, and
D. Manocha. Fast computation of generalized
voronoi diagrams using graphics hardware. In Pro-
ceedings of SIGGRAPH 99, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 277–
286, Aug. 1999.

[25] O. Karpenko, J. F. Hughes, and R. Raskar. Free-form
sketching with variational implicit surfaces. Com-
puter Graphics Forum, 21(3), September 2002.

[26] R. Kimmel and J. A. Sethian. Computing geodesic
paths on manifolds. Proceedings of National
Academy of Sciences, 95(15):8431–8435, 1998.

[27] R. Klein. 3d mesh-editing. In Dagstuhl
Seminar: Image Synthesis and Interactive
3D Graphics, volume 25. Michael Cohen,
Heinrich Mueller, Claude Puech, Hans-
Peter Seidel, June 2000 – http://cg.cs.uni-
bonn.de/docs/publications/2000/dagstuhl-
presentation.pdf.

[28] R. Klein and A. Schilling. Fast distance field interpo-
lation for reconstruction of surfaces from contours.
In Eurographics ’99, Short Papers & Demos pro-
ceedings, 1999. Conference held in Milano, Italy,.

[29] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Sei-
del. Interactive multi-resolution modeling on arbi-
trary meshes. Computer Graphics, 32(Annual Con-
ference Series):105–114, 1998.

[30] L. P. Kobbelt, T. Bareuther, and H.-P. Seidel. Mul-
tiresolution shape deformations for meshes with dy-
namic vertex connectivity. Computer Graphics Fo-
rum, 19(3), August 2000.

[31] M. Lanthier, A. Maheshwari, and J.-R. Sack. Ap-
proximating weighted shortest paths on polyhedral
surfaces. In 6th Annual Video Review of Compu-
tational Geometry, Proc. 13th ACM Symp. Compu-
tational Geometry, pages 485–486. ACM Press, 4–
6 1997.

[32] S. Lee. Interactive multiresolution editing of arbi-
trary meshes. In P. Brunet and R. Scopigno, editors,
Proc. of Eurographics ’99, pages C–73–C82, 1999.

[33] I. Llamas, B. Kim, J. Gargus, J. Rossignac, and C. D.
Shaw. Twister: A space-warp operator for the two-
handed editing of 3d shapes. ACM Transactions on
Graphics, 22(3):663–668, July 2003.

[34] R. MacCracken and K. I. Joy. Free-form deforma-
tions with lattices of arbitrary topology. In Proceed-
ings of SIGGRAPH 96, Computer Graphics Proceed-
ings, Annual Conference Series, pages 181–188,
Aug. 1996.

[35] L. Markosian, J. M. Cohen, T. Crulli, and J. Hughes.
Skin: a constructive approach to modeling free-
form shapes. In Proceedings of the 26th annual
conference on Computer graphics and interactive
techniques, pages 393–400. ACM Press/Addison-
Wesley Publishing Co., 1999.

[36] J. S. B. Mitchell, D. M. Mount, and C. H. Papadim-
itriou. The discrete geodesic problem. SIAM Journal
on Computing, 16(4):647–668, 1987.

[37] M. Novotni and R. Klein. Computing geodesic
distances on triangular meshes. In The 10-th In-
ternational Conference in Central Europe on Com-
puter Graphics, Visualization and Computer Vision
(WSCG), pages 341–347, 2002.

[38] A. Opalach and M. Cani-Gascuel. Local defor-
mations for animation of implicit surfaces. In
W. Straßer, editor, 13th Spring Conference on Com-
puter Graphics, pages 85–92, 1997.

[39] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross.
Shape modeling with point-sampled geometry. ACM
Transactions on Graphics, 22(3):641–650, July
2003.

[40] T. W. Sederberg and S. R. Parry. Free-form defor-
mation of solid geometric models. In Proceedings
of the 13th annual conference on Computer graph-
ics and interactive techniques, pages 151–160. ACM
Press, 1986.

[41] M. Sharir and A. Schorr. On shortest paths in
polyhedral spaces. SIAM Journal on Computing,
15(1):193–215, 1986.

[42] W. Welch and A. Witkin. Variational surface mod-
eling. In Computer Graphics (Proceedings of SIG-
GRAPH 92), volume 26, pages 157–166, July 1992.

[43] G. Zachmann. Optimizing the collision detection
pipeline. In The First International Game Technol-
ogy Conference GTEC, Jan. 2001.

[44] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes.
Sketch: an interface for sketching 3d scenes. In Pro-
ceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 163–170.
ACM Press, 1996.

[45] D. Zorin, P. Schröder, and W. Sweldens. Interactive
multiresolution mesh editing. Computer Graphics,
31(Annual Conference Series):259–268, 1997.

[46] M. Zwicker, M. Pauly, O. Knoll, and M. Gross.
Pointshop 3d: an interactive system for point-based
surface editing. In Proceedings of the 29th annual
conference on Computer graphics and interactive
techniques, pages 322–329. ACM Press, 2002.

666



Figure 6: Image editing: Translation ((a) and (b)) and rotation ((c) and (d)) of the head of da Vinci’s Mona
Lisa.

Figure 7: Mesh editing example. (a) Definition of fixed area and handle. Note that the border of the
handle is chosen casually. In the example the handle area contains only a few triangles. (b) Side view of
the model before deformation. (c) The tip of the nose is dragged; in the silhouette it can be seen that the
connections between deformed area and fixed area or handle, respectively, remain ”continuous”. (d) Instead
of a translation a rotation is applied. Note that these deformations are interactively performed on a simple
500 MHz Laptop.

Figure 8: Using the shape function. First of all, the handle (in this case the nose) is dragged. Then a
shape function is interactively modified as shown in the middle figures. In the middle left example larger
displacements occur only close to the handle, resulting in a pointed nose. In the middle right example the
shape function raises already at small values and therefore the deformation starts close to the fixed area.
The picture to the right shows a fancy editing of the tail of the Stanford bunny using a rotation.

666


