
Eurographics Symposium on Geometry Processing (2003)
L. Kobbelt, P. Schröder, H. Hoppe (Editors)

Mesh Forging: Editing of 3D-Meshes Using Implicitly Defined
Occluders

G. H. Bendels† and R. Klein‡

University of Bonn,
Institute of Computer Science II, Computer Graphics,

Römerstrasse 164, 53117 Bonn, Germany

Abstract

In recent years the ease of use and the flexibility in the editing process shifted into focus in modelling and ani-
mation applications. In this spirit we present a 3D mesh editing method that is similar to the simple constrained
deformation (scodef) method 9. We extend this method to the so-called mesh forging paradigm by adding an oc-
cluder to the editing environment. Our method resembles and was in fact motivated by the forging process where
an anvil is used to give the manipulated object the desired shape. While users perform the editing operation by
directly manipulating the 3D-mesh, the occluder is defined implicitly. To enable fine detail edits even in sparsely
triangulated areas, we propose an adaptive refinement method that also allows the creation of sharp features
where desired. The functionality and ease of use of our editing approach is shown by several examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications; I.3.4
[Graphics Utilities]: Graphics Editors; I.3.5 [Computational Geometry and Object Modelling]: Object Modelling

1. Introduction and Previous Work

Traditionally, the goal of research in geometric modeling
and design was to find representations of 3D objects and
modeling tools enabling a possibly intuitive and efficient de-
sign process, the choice of the former usually influencing the
range of choices for the latter and vice versa. A prominent
example of such free form surface design methodologies are
the piecewise polynomial tensor product surfaces. This rep-
resentation reflects a balance of certain specific demands. On
the one hand, there are the industrial requirements of enforc-
ing some constraints on the result, e.g. smoothness, man-
ufacturability, etc. On the other hand, the designer should
be able to work efficiently, which calls for intuitivity and
simplicity, especially in the early stages of design. As ge-
ometric modeling finds applications in a wide spectrum of
computer graphics applications, the focus of much research

† bendels@cs.uni-bonn.de
‡ rk@cs.uni-bonn.de

effort shifts towards the latter. Originally, the needs of the in-
dustry imposed requirements on geometric design methodol-
ogy that made it cumbersome and time consuming. In case of
tensor product surfaces, even the changes appearing concep-
tually small are hard to execute. However, exact and prov-
able geometric properties of the product are not relevant in
numerous current application areas like film industry, com-
puter games, etc. As the most relevant quality measure in
these contexts is the visual appeal, much of the research fo-
cusses on finding new modeling metaphors and techniques
according to this criterion 35.

In case of implicit deformations, the objects are embedded
in a space. The warping of these spaces causes a correspond-
ing deformation of the object. According to the most pop-
ular such approach called Free Form Deformations (FFD)
3, 37, the surrounding space is defined as a multidimensional
spline. This technique has been further improved and gener-
alized 16, moreover, it was adapted to generate animations by
e.g. 16, 17. The main advantage of these methods is that they
enable a deformation that is independent of the complexity
of the object being manipulated. However, as pointed out in

c© The Eurographics Association 2003.

207



Bendels et al / Mesh Forging

23, the placement and control of the lattice defining the de-
formation is non-trivial. The improvements of 23, 24 remedied
these problems for the case of a single edit. In this system
the user has to define only the initial control lattice, which is
then modified transparently to the user as she edits the ob-
ject by dragging a point on the surface. However, since the
control points move according to the user’s input, the result
of a subsequent edit depends on a new control lattice, and
may thus be contra-intuitive, cf. 19, as it is different from an
identical edit in an untouched region.
A prominent example of techniques relying on piecewise
polynomial representations is the classical NURBS model-
ing approach 18. It reflects the idea of imposing a control
mesh directly on the surface of the object, the desired mod-
eling effect is then achieved by modifying the control points
of this mesh. However, since there are few degrees of free-
dom in determining the scale of an edit and the topology of
the control mesh, working with NURBS requires much ex-
pertise and is time intensive.

The algorithmic generalization of piecewise polynomial
representations are the subdivision surfaces 15, 14, where a
smooth surface is generated by iterative refinement of a con-
trol mesh according to certain subdivision rules. Since sub-
division surfaces essentially comprise a representation of an
object on different levels of scale, they may be utilized as
a basis for Multiresolution Mesh Editing (MME) 41. The
idea of multiresolution editing is to use different levels of
detail of the object to perform edits on different scales: De-
tail edits are performed on finer meshes and large scale edits
on coarser meshes representing the same object. Saving the
finer meshes as details with respect to the coarser meshes
provides for detail preservation during large scale edits. Un-
fortunately, since the one-ring of the edited vertex defines the
region of influence (ROI) of an edit, the subject of the edit
and the ROI are completely connectivity-defined and cannot
be chosen arbitrarily. Kobbelt et al. 27, 28 provided a solution
to this problem by abandoning the idea of defining the mul-
tiresolution representations as a coarse-to-fine hierarchy of
nested meshes, and rather utilizing a hierarchy of scales in
terms of smoothness. The levels of detail are generated by
a hierarchical mesh smoothing scheme. During the editing
process the designer picks a region of interest defining the
scale of the edit, and a handle, i.e. another region within the
ROI that undergoes the user-defined transformation. Each
time the user transforms the handle, the mesh within the ROI
transforms according to a constrained energy minimization
principle. This latter modeling metaphor stems from the area
of variational modeling 39 where the shape of a region of the
surface is a solution to a constrained optimization problem.
Thus, the basis function of the deformation is completely de-
termined by the shape of the handle and the boundary of the
ROI.
In the above algorithms the user picks and specifies a trans-
formation for parts of the object. Into this type of direct
editing, further research has been done. Lee 29 proposes a

method where the user picks a set of handle vertices in the
mesh and specifies modifications for these. For vertices in
the editing region, which is defined by the user beforehand,
the transformations of the handle vertices are interpolated
using multilevel B-Splines. These are parameterized over a
2D embedding of the editing region, making this method
suitable especially in flat regions. The influence of the han-
dle vertices’ transformation on neighboring vertices is deter-
mined by the size of the coarsest control lattice used in the
B-spline interpolation.
Recently, Pauly et al. 33 presented a modelling technique,
transferring multiresolution results to the case of point-
sampled geometry. In their setting, shapes are modified by
defining a so-called zero-region and a one-region. The one-
region undergoes the full user-defined transformation (trans-
lation or rotation), whereas the zero-region remains fixed
and a predefined blending function is used to create a smooth
transition between the two regions. Also focussing on point-
sampled geometry Zwicker et al. 42 generalize standard 2D
image editing techniques to 3D, reconstructing well-known
pixel editing tools.
While the methods mentioned so far mainly apply to modi-
fying existing shapes, SKETCH40, SKIN 30 and TEDDY 25,
which were later extended in 26, are among those methods
generating models from scratch. Modifying shapes in these
approaches is realised using a method called oversketching,
i.e. drawing parts of the silhouette of the shape anew.

Although interactive display of implicit surfaces 5 is still
a challenge, implicit modeling has gained more and more re-
search attention in recent years. Distance surfaces like blobs
4, meta-balls 10, soft objects 7, and convolution surfaces 6 are
popular in Computer Animation since the geometric "skele-
ton", with respect to which they are defined, can be used as
an internal structure to control the animation 11 and even for
LOD-representations13, 1. Several methods have been pre-
sented to tackle the so-called "unwanted blending problem",
e.g. 2. Furthermore, the availability of inside-outside infor-
mation allows for efficient collision detection and response
32.

Of particular relevance for this paper is the work of Bor-
rel et al. presented in 8, 9 and later extended in 36. The algo-
rithm proposed in this paper is similar in the way the dis-
placement of vertices in the neighbourhood of user-defined
handles are computed but is extended to incorporate sharp
features where desired. In addition to that, we use geodesic
distances to define an object-inherent parametrization for our
shape functions, thus freeing the user of the need to adjust
object-independent region of influence definitions as in e.g.
36.
Anisotropic parameterizations are feasible through multiple,
handle-independent anchors. Moreover we introduce editing
occluders, i.e. implicitly defined 3D-objects that influence
the editing operations. With these editing occluders we de-
fine a novel editing paradigm resembling the forging process
where an anvil is used to give an object the desired shape.

c© The Eurographics Association 2003.

208



Bendels et al / Mesh Forging

The main contributions of this paper are a closed formula-
tion for the editing method including the occluder field influ-
ence. By representing the model to be deformed as a trian-
gular mesh, while the occluder is defined implicitly, our ap-
proach takes advantage of both representations respectively,
in particular the efficient collision detection. Moreover, we
transfer the concept of Precise Contact Modeling (PCM) to
the setting of triangular meshes.

The rest of this paper is organized as follows. In section
2, we give an overview over the editing process, describe
the underlying mathematical formulation and the influence
of shape functions. Section 3 introduces what we call the
mesh forging process. The adaptive refinement method pro-
posed for the shape function edits is described in section 4.
Results and examples of models manipulated with our tool
are given in section 5. This section also gives conclusions
and discusses future directions of research.

2. Editing Process

Figure 1: The user interface with an exemplary arm move-
ment. The model was reconstructed from a laser range scan.
On the right hand side we see the modified model after
applying a translation modification based on geodesic dis-
tances. The arm is lifted without affecting the torso. Note the
detail preservation leading to the the realistic folds of the
sleeve.

In this section we will describe how the user’s specifi-
cation of the modification for a set of handle vertices is
used to produce a smooth, detail-preserving and intuitive de-
formation of the whole mesh. Due to the similarity to our
method and since it is not widely known, we briefly review
the method presented in 36 in section 2.1. In section 2.2 we
describe how this methodology can be extended to rotations,
while the rest of the section focusses on defining suitable
parameterizations of the editing region.

2.1. Translations

We first consider the case where a user specifies a translation
for the handle vertices. The main idea is that every geometric

modification of a 3D shape can be interpreted as a displace-
ment function

d :
� 3 →

� 3 (1)

that assigns to every point p ∈
� 3 a displacement vector

d(p) such that the resulting point positions after the modi-
fication are given as

pnew = pold +d(pold). (2)

In our setting the values of this displacement function (also
referred to as constraints 9) are defined at the handle vertices
only. For all other vertices the mapping has to be determined.

The idea to solve this problem is to write the displace-
ments of all vertices as a weighted sum of virtual displace-
ment vectors for the handle vertices – which we call partial
displacements d j in contrast to the total displacements d(p)

d(p) =
k

∑
j=1

α j(p)d j. (3)

Here k is the number of handle vertices and

α j :
� 3 →

�
, j = 1, . . . ,k

are weight functions. Note that for each p, α j(p) can be
interpreted as a special weight corresponding to the handle
vertex p j.

The above formulation allows for the desired degree of
freedom for choosing the set of handle vertices and the prop-
erties of the edit. Please note that simply setting d j = d(p j)
is not a satisfying choice, as becomes clear when we con-
sider the case where the ROI of different handle vertices
overlap in a way such that α j(pi) 6= 0 for a pair of handle
vertices pi, p j, i 6= j. In this case pi undergoes (in addition to
its own transformation) a transformation induced by the han-
dle vertex p j. This would render the handle vertices moving
to positions different than defined by the user, unless we im-
pose strict normalization conditions on the weight functions,
which, in turn, would prohibit the use of arbitrary and user-
defined weight functions. Therefore, we calculate the partial
displacements according to the weight functions.

Since, by user-definition, d(p j) is known for the handle
vertices p1, . . . ,pk, equation (3) leads to a linear system of
equations

(

d(p j)

)

j=1,...,k
= A

(

d j

)

j=1,...,k
(4)

with

A =

(

α j(pi)

)

i=1,...,k
j=1,...,k

(5)

giving us 3k equations for the total displacements d(p j) with
3k unknowns d j , 1 ≤ j ≤ k.

Of course, ill-conditioned weight function choices (such
as α j(p j) = 0) might leave the matrix A singular or close

c© The Eurographics Association 2003.

209



Bendels et al / Mesh Forging

to singular. This can easily be avoided using either a SVD
for detecting and prohibiting those ill-conditioned modifica-
tions of the shape function or ROI, or a pseudo-inverse as
suggested in 34. For a detailed discussion cf. 9.

After solving (4), (3) is used again to compute the total
displacements for the other vertices.

Please note that for a single handle vertex p0, (3) reduces
to

d(p) = α(p)d0

with d0 = 1/α(p0) d(p0), leading to a very efficient formu-
lation for the frequent case of single handle vertex edits.

2.2. Rotations

As stated above, every transformation can be interpreted as a
displacement field, and thus even rotation-like modifications
of the object (like turning a person’s head) are in theory pos-
sible with the above formulation. In general, to achieve sat-
isfying results, this would require a considerable number of
handle vertices, though. Therefore we propose using a dif-
ferent kind of constraints for rotational editing operations.
Instead of defining total displacements for the handle ver-
tices, the user defines total rotations η1, . . . ,ηk with respect
to an axis n.

In our current implementation, the rotation axis is defined
by the screen center and the viewing direction. Analogously
to the displacement field in the translation case, we define a
rotation field

η :
� 3 →

�

that assigns to every point p ∈
� 3 a rotation angle η(p) such

that the resulting point positions after the modification are
given as

pnew = R(η(pold),n) pold, (6)

where R(η,n) is the rotation matrix that rotates the space
by an angle of η about the axis n. As in the translation con-
text, the values of this rotation map are defined at the handle
vertices only. For the other vertices the mapping has to be
determined as above using

η(p) =
k

∑
j=1

α j(p)η j

with partial angles η j and total angles η(p).

2.3. Parametrizations and Shape Functions

A very simple approach for a weight function could be for
example α j(pi) = δi j leading to d(p j) = d j and η(p j) = η j.

Note the similarity of this formulation to standard scat-
tered data interpolation problems. The above choice of

weight functions would give us the generally unsatisfying
approach that moves the handle vertices as specified and
leaves all other vertices unchanged. Instead, we define the
weight functions to be a composition

α j(p) = ϕ◦ γ j(p)

of a shape function

ϕ :
� ≥0 →

�
(7)

and a parametrization of the object

γ j :
� 3 →

� ≥0. (8)

The mathematical framework presented in the previous sec-
tions is applicable with any distance function γ :

� 3×
� 3 →

� ≥0 if we define

γ j(p) = γ(p j,p). (9)

In order to achieve intuitive results however, γ should be cho-
sen such that it defines intuitive neighborhoods on the object.

Although appropriate in some occasions, choosing Eu-
clidean distances

γ(p,q) = ‖p−q‖

as in 38 would make it virtually impossible, for example,
to bend a person’s index finger without interfering with the
other fingers.

We propose using geodesic distances instead, i.e. the
length of the shortest curve between p and q on the boundary
of the object. Using definition (9), the object is thus parame-
terized via geodesic distance fields with respect to the handle
vertices p j .

The impact of this choice on the resulting editing oper-
ations is visualized in figure 3(a) <see color section> that
shows an editing operation applied to a simple triangle mesh
representation of a hand. Pictures (1) and (3) show the origi-
nal mesh with the region of influence colored in red. Pictures
(2) and (4) show the modified meshes, after an identical edit
has been performed (based on Euclidean distances in the top
row and on geodesic distances in the bottom row). Note how
the middle and ring finger have been deformed in picture (2),
whereas in picture (4) only the index finger has been modi-
fied (as desired in this example).

Raffin et al. 36 propose user-definable hulls of influence
surrounding the parts of the object that should be affected to
achieve the above results, but we feel that the geodesic dis-
tances provide for a useful object-inherent parametrization
for the modification of surfaces, and therefore lead to a more
convenient user interface, freeing the user from the need to
fit hulls of influence to the specific editing situation (which
might be difficult, if the fingers e.g. are very close).

To efficiently compute the geodesic distances between the
handle vertices and all other vertices, our implementation
uses the algorithm from 31. Nevertheless this is computation-
ally nontrivial, but it does not prevent interactive response,

c© The Eurographics Association 2003.

210



Bendels et al / Mesh Forging

since it is performed only when the vertices are selected or
deselected, not during dragging.

Figure 2: Different shape function settings applied to the
same editing operation

Shape Functions (cf. figure 2) provide for more flexibil-
ity and degrees of freedom than e.g. the trivariate Bern-
stein polynomials used in FFD methods or the parameterized
Gaussian functions used in 38.

In many cases, choosing smooth shape functions will be
sufficient, but in other cases the user might want to intro-
duce sharp features into the edited area. This can easily be
achieved using our approach by employing the appropriate
shape function, given that the triangulation of the underly-
ing mesh is adequately fine (see section 4).

2.4. Separating Handles and Anchors

The method presented so far relies on an object parametriza-
tion with respect to the handle vertices. Whereas this results
in an intuitive and easy-to-use tool, there is no theoretical
obligation to identify the handles used to define the total
transformations with the anchors used to define the object
parametrization. In some occasions, it might be desirable to
parameterize the object with respect to other vertices than
the handles. As an example, one can think of turning a per-
son’s head (with a rigid head and a smoothly twisted neck)
while the rest of the body remains unchanged down from the
shoulders (see figure 3(b) in the color section). In this case it
is useful to define the parametrization with respect to anchor
vertices at the top of the head, while the handle vertex can
be picked somewhere else on the mesh.

Additionally, separating handles from anchors has another
advantage: We can extend this line of thought to a multiple
anchors - single handle-approach, i.e. the parametrization of
the object is defined with respect to a set of anchor vertices
a j

1, . . . ,a
j
l rather than to a single anchor vertex. Thus we are

able to define anisotropic distance fields on the object, free-
ing us from the limitation of rotationally symmetric parame-
terizations. In our current implementation, the distance field

defining the parametrization corresponding to handle vertex
p j is then defined for every mesh vertex p as

γ j(p) = min
1≤i≤l

γ(a j
i ,p). (10)

It is known that the iso-values of γ j(p) in equation (10)
do not form smooth curves. But implementing known tech-
niques from implicit modelling (e.g. following the ideas of
Convolution Surfaces from 5) into our setting is a straight-
forward extension leading to smooth distance fields.

3. Mesh Forging Process

Figure 3: Example of a mesh forging operation. A vertex
of the editing object (the grey coloured ball) is picked and
dragged. The occluder (the green cylinder) induces a force
field that superposes the displacement field and drives the
transformed vertices around it.

The basic idea of mesh forging is to add an occluder (the
anvil) to the editing space in form of a force field, thereby
replicating the Precise Contact Modelling (PCM) methodol-
ogy (see below) in the context of mesh editing. Here, the oc-
cluder field controllably superposes (and thereby modifies)
the transformation applied to the vertices of the mesh (cf.
figure 3 for an example).

In implicit modelling, contact situations between two sur-
faces

Si = {p ∈
�

| fi(p) = c}, i ∈ {1,2}

are easily detected by checking for points p satisfying both
f1(p)≤ c and f2(p)≤ c. For these points in the interpenetra-
tion region, a compression term is added to the field function

c© The Eurographics Association 2003.

211



Bendels et al / Mesh Forging

fi. If only S1 is deformable and S2 rigid, f1(p) is replaced by

c+(c− f2(p))

for all p in the interpenetration region.
In order to mimic volume preservation in the contact regions,
a dilation term b(p) is added for points p in the propagation
region

{p ∈
�

| c̃ ≥ f2(p) > c}

with some constant c̃. For an in-depth description of the
PCM methodology, see 12, 32.

3.1. The Algorithm

Figure 4: Successive occluder influence. The stippled vector
indicates the vertex transformation d(p) as defined by the
editing operation, the green vectors represent the n-th part
dn(p) = 1/n d(p) of this transformation. The dashed red
vectors indicate the repelling force due to the occluder field.
Note how the considered vertex p moves along the boundary
of the occluder leading to the expected editing behaviour.

Let us start with an example to motivate our algorithm.
Suppose that in a mesh editing environment, we have a ver-
tex p ∈

� 3 in the mesh and, defined by some modelling op-
eration, a total displacement d(p) for this vertex. In order
to detect collisions even for larger edits, we first subdivide
d(p) into N pieces – otherwise it would be possible to move
through the occluder or through occluder details. Our algo-
rithm then leads to the following sequence of transforma-
tions (see figure 4):

p 7→ p1 = p + 1
N d(p)+o(p+ 1

N d(p))

p1 7→ p2 = p1 + 1
N d(p)+o(p1 + 1

N d(p))
...

pN−1 7→ pN = pN−1 + 1
N d(p)+o(pN−1 + 1

N d(p))

(11)

Here, o(p) is the occluder field and corresponds to the com-
pression term in the implicit modelling context. To describe
the editing process in general, we get the following recursive
algorithm:

pi−1 7→ pi =pi−1 + 1
N d(p)+o(pi−1 + 1

N d(p)) (12)

Our new transformation equation can then be written as

p 7→ p+d(p)+
N

∑
i=1

o(pi). (13)

This is a natural generalization of equation (2).

Although the above formulation would allow for a com-
plete tracking of the editing path as indicated by the mouse
movement, we still evaluate the displacement field d at p
only.

3.2. Defining the Occluder Field

For the efficient detection of contact situations we define the
occluder implicitly as a signed distance vector field, i.e. for
every point p ∈

� 3, in addition to the signed distance

δ :
� 3 →

�

p 7→ signed distance of p
to occluder surface,

(14)

we store the direction

∆ :
� 3 →

� 3

p 7→ (p0 −p)/‖p0 −p‖, (15)

to the closest point p0 on the occluder surface. We discre-
tionarily choose δ(p) < 0 iff p is inside the occluder.

The well-known Adaptively Sampled Distance Fields
(ADFs) 20 serve well for our purpose here since we can use
the sample density of the ADF as a hint for the sampling
distance for the editing paths. We propose using the voxel
width as a local path sampling rate. This inherently allows
for feature detection in the occluder field.

Although our current implementation makes use of ana-
lytically defined occluders, a future toolbox will contain a
set of predefined signed distance fields. The distance fields
to user-defined occluders have to be calculated in a prepro-
cessing step. However, this does not prevent user interaction
with the occluder: Resizing, translating, rotating are all triv-
ially available without changing the actual values in the dis-
tance field. Evaluating the "transformed" distance field at a
position p simply requires the evaluation of the original dis-
tance field after applying the inverse transformation to p.

Having access to the distance values and to the closest
point on the occluder surface at any position in space, we
have now all the ingredients to formulate our occluder force
field. We define

o :
� 3 ×

� 3 →
� 3

(p,d(p)) 7→ o(p,d(p))
(16)

as follows:

o(p,d(p)) = −ψ(δ(p+d(p))) ·∆(p+d(p))

where ψ :
� 3 →

�
is an influence function that can be

thought of as a kind of shape function for the occluder and

c© The Eurographics Association 2003.

212



Bendels et al / Mesh Forging

that determines the effective impact of the occluder field. De-
pending on the actual editing circumstances, different influ-
ence functions are appropriate, e.g.

ψ(δ(p)) =

{

δ(p) : δ(p) ≤ 0
exp(−δ2(p)) : δ(p) > 0.

(17)

This influence function guarantees that vertices penetrating
the occluder are transferred to the occluder surface, regard-
less of the underlying editing operation, and vertices coming
close to the occluder surface but not penetrating it are also
repelled. This prevents (to some extent) the fingers from flat-
tening in figure 2 <see color section>.

The rationale behind formulating o = o(p,d(p)) instead
of o = o(p), i.e. making the occluder field not only depen-
dent on the locus p but also on the editing direction d(p)
is that this leads to a more flexible approach. The most sig-
nificant benefit from this formulation is that we are able to
assure that the occluder has no bigger effect than the orig-
inating displacement and therefore to restrict the occluder
influence to the editing region of influence. This can easily
be done by including ‖d(p)‖ as a factor into equation (17).

4. Adaptive Refinement

Figure 5: Left: For some edits, the triangles might be too
large to represent fine details as defined by the shape func-
tion (top). Result after refinement (bottom). Right: The er-
ror induced by applying a transform to a polygonal mesh
as specified by the shape function without refining the mesh
corresponds to the error induced by linearly interpolating
the shape function between two adjacent vertices in the
mesh.

Editing operations change the geometric properties of
the underlying mesh. Edits are likely to add small details
that might not be representable by the current triangulation.
Therefore an adaptive refinement method has to be applied,
e.g. as proposed in 22 or 21. Here, local curvature informa-
tion (by midpoint subdivision or by vertex normal deviation,
resp.) is used to decide if further refinement is required.

In addition to this general refinement technique, we pro-
pose exploiting the shape function information to decide if
and where edges have to be subdivided in order to be able to

incorporate sharp feature edits. Therefore, we consider the
error induced by linearly interpolating the shape function be-
tween adjacent vertices (see figure 5). For a handle vertex p
and an edge (v0,v1) we define

εp
v0,v1 = max

t0≤t≤t1

∣

∣

∣

∣

ϕ(t)−ϕ(t0)+
t − t0
t1 − t0

(ϕ(t1)−ϕ(t0))
∣

∣

∣

∣

(18)
with t0 = γ(p,v0), t1 = γ(p,v1) and ϕ and γ as defined in (7)
and (8) respectively. For multiple handle vertices p1, . . . ,pk
we define

εv0,v1 = max
p=p1,...,pk

εp
v0,v1 .

Edges are subdivided if ε exceeds a user-controllable thresh-
old.

Let tmax be the parameter in [t0, t1] for which the right
hand side in (18) becomes maximal. A new vertex will then
be inserted into this edge at the temporary position

vmax = v0 +
tmax

t1 − t0
(v1 −v0) .

Figure 6: Sharp features can be modelled because the mesh
is adaptively refined according to an edit applied to the
mesh.

After the insertion of new vertices, the new edges are
checked if further refinement is required. Finally, the new
positions for all vertices in the mesh are calculated. In this
step we take advantage of the fact, that we can easily approx-
imate the geodesic distance for every new vertex vmax on the
edge (v0,v1) from the distance values of the two adjacent
vertices. To this end, let δ0 and δ1 be the distances of the
vertices v0 and v1 to the handle resp. We compute a virtual
origin for the distance calculation on the intersection of the
two spheres with radii δ0 and δ1 and centers v0 and v1. Since

c© The Eurographics Association 2003.

213



Bendels et al / Mesh Forging

the intersecting circle is orthogonal to the edge (v0,v1), ev-
ery point on it has the same distance to vmax which is used as
the desired approximation of the geodesic distance in vmax
(cf. 31).

Whereas the above refinement strategy allows for sharp
feature editing by recursively subdividing edges where in-
dicated by the shape function, further refinement might be
required to model contact situations, as can be seen in the
rightmost picture in figure 2 <see color section>. We are cur-
rently working on an approach to extend our adaptive refine-
ment strategy in this direction.

5. Results and Discussions

As an example for the power of our rotation scheme for an-
imation purposes, we consider the famous Stanford Bunny.
Figure 1 <see color section> shows how the bunny’s ears can
be transformed with one single editing operation consisting
of as few as four editing steps. Firstly, the tips of the two
ears are selected as handles; secondly, we make a prelimi-
nary choice for the ROI of the edit (we can always change
that at later stages of the edit, the preliminary choice only
improves the visual feedback during the following steps). In
our current implementation, the rotation axis is defined by
the screen center and the viewing direction. Hence we posi-
tion the bunny accordingly and drag the tips of the ears to
the desired position (figure 1 (4) <see color section> ). After
the transformation for the tips of the ears has been specified,
we can interactively modify the shape function in order to
achieve a realistic look of the ears. It would have been very
hard to achieve this result using the translation scheme only.

Figure 3(b) <see color section> is an example for the use
of the anisotropic rotational editing scheme. The rotation
axis was chosen in this example approximately parallel to
the spine. Note that only the head has turned, the shoulder
region remained fixed. In order to have the head remain rigid
while the neck is twisted, few anchor vertices have been cho-
sen on the top of the head, and a single handle vertex was
picked on the nose. The multiple anchor vertices are nec-
essary because otherwise it had been difficult to adjust the
region of influence such that only the neck is twisted (a head
is not perfectly round, so choosing only one anchor vertex
at the top will not lead to a satisfying region of influence
behavior – with just one anchor vertex either the shoulder
region will be influenced or "outer regions" as the chin will
not move rigidly with the rest of the head).

The possibility of choosing multiple anchor vertices is
also feasible to solve problems arising with the use of
geodesic distances as the basis of our object parametrization:
Certain object surface features (imagine a ring with a promi-
nent gem on the finger in the example depicted in figure 3(a)
<see color section>) can cast "geodesic shadows". We cur-
rently examine in how far surface smoothing before the cal-
culation of the geodesic distances diminishes or solves this
problem.

Nevertheless, as geodesic distances reflect properties in-
herent to the surface, they yield in general more intuitive
editing results than Euclidean distances, without having to
define object-independent hulls of influence as proposed in
36.

Our current implementation is based on the superposition
of distance fields computed with respect to the single anchor
vertices. As pointed out in section 2 this does not lead to a
smooth distance field. However, implementing results of im-
plicit modelling (e.g. convolution surfaces6) will lead to a
convenient method to define smooth distance fields with re-
spect to the anchor points as skeletons, where desired. More-
over, allowing other primitives like edges or triangles to be
used for these skeletons will provide for a powerful tool to
define regions of influence for the editing operations. This
could be incorporated into our approach without even chang-
ing the user interface.

With our adaptive refinement method we are able to model
sharp features even in sparsely triangulated regions of the
mesh, as can be seen from figure 6. However, our refine-
ment strategy is based on the shape function edit only. It
does not take into account the underlying geometric prop-
erties of the object in the editing region. Therefore, even in
cases in which the edit actually reduces details on the mesh,
new vertices might be inserted. We’re currently working on
a method to prohibit the insertion of vertices in these cases,
yet maintaining the efficiency of analyzing only the shape
function.

So far, our implementation is purely vertex-based, the user
can only choose vertices as handles and anchors. It would
be desirable (and a straight forward extension) to allow for
arbitrary points on the object surface to be picked.

In many cases picking one or more vertices on the mesh
and dragging them to the desired position is sufficient and
leads to satisfying results. In some occasions, though, that
might not give users enough flexibility. Therefore we allow
users to specify the parametrization of the object indepen-
dently from the handles (cf. section 2.4). Among other ben-
efits, this simplifies the editing operation in rotation cases
where the distance field is defined on (or close to) the rota-
tion axis. In these cases, it is convenient to grab a different
point on the object to specify the rotation angles.

Our mesh editing approach can not only be used for an-
imation but also for modelling purposes as it can be seen
from figure 7. Starting from a sphere, we create a complete
teapot. Note how the shape function can be used to model
details on the teapot’s handle with a rotational edit.

References

1. A. Angelidis and M.-P. Cani. Adaptive implicit model-
ing using subdivision curves and surfaces as skeletons.
In Solid Modelling and Applications. ACM, June 2002.
Saarbrucken, Germany.

c© The Eurographics Association 2003.

214



Bendels et al / Mesh Forging

Figure 7: Creating a teapot (top right) from a primitive (top left) with just a few editing operations. The basic editing operations
are depicted together with the corresponding shape functions (left and bottom). The arrows indicate the modification applied to
the handles. Note how the shape function can not only be used to adjust the overall shape of the edit but also to add details to
the model (see the teapot’s handle in the last editing step and in the final result).

2. A. Angelidis, P. Jepp, and M.-P. Cani. Implicit mod-
eling with skeleton curves: Controlled blending in con-
tact situations. In Shape Modeling International. ACM,
IEEE Computer Society Press, 2002. Banff, Alberta,
Cananda.

3. A. H. Barr. Global and local deformations of solid
primitives. In Proceedings of the 11th annual confer-
ence on Computer graphics and interactive techniques,
pages 21–30, 1984.

4. J. F. Blinn. A generalization of algebraic surface draw-
ing. ACM Transactions on Graphics (TOG), 1(3):235–
256, 1982.

5. J. Bloomenthal. Introduction to Implicit Surfaces. Mor-
gan Kaufmann Publishers, Inc., 1997.

6. J. Bloomenthal and K. Shoemake. Convolution sur-
faces. In Proceedings of the 18th annual conference on
Computer graphics and interactive techniques, pages
251–256. ACM Press, 1991.

7. J. Bloomenthal and B. Wyvill. Interactive techniques
for implicit modeling. Computer Graphics (1990 Sym-
posium on Interactive 3D Graphics), 24(2):109–116,
1990.

8. P. Borrel and D. Bechmann. Deformation of n-
dimensional objects. In Proceedings of the first
ACM symposium on Solid modeling foundations and
CAD/CAM applications, pages 351–369. ACM Press,
1991.

9. P. Borrel and A. Rappoport. Simple constrained defor-
mations for geometric modeling and interactive design.
ACM Transactions on Graphics (TOG), 13(2):137–155,
1994.

10. B.Wyvill, C.McPheeters, and G.Wyvill. Data structure
for soft objects. The Visual Computer, 2(4):227–234,
1986.

11. M.-P. Cani. Implicit representations in computer ani-
mation : a compared study. In Proceedings of Implicit

c© The Eurographics Association 2003.

215



Bendels et al / Mesh Forging

Surface ’99, Sep 1999. Invited paper.

12. M.-P. Cani and M. Desbrun. Animation of deformable
models using implicit surfaces. IEEE Transactions on
Visualization and Computer Graphics, 3(1), Mar 1997.
Published under the name Marie-Paule Cani-Gascuel.

13. M.-P. Cani and S. Hornus. Subdivision curve primi-
tives: a new solution for interactive implicit modeling.
In Shape Modelling International, Italy, May 2001.

14. E. Catmull and J. H. Clark. Recursively gener-
ated b-spline surfaces on arbitrary topological meshes.
Computer-Aided Design, 10:350–360, November 1978.

15. G. Chaikin. Short note: An algorithm for high-speed
curve generation. Computer Graphics and Image Pro-
cessing, 3:346–349, 1974.

16. S. Coquillart. Extended free-form deformation: a sculp-
turing tool for 3d geometric modeling. In Proceed-
ings of the 17th annual conference on Computer graph-
ics and interactive techniques, pages 187–196. ACM
Press, 1990.

17. P. Faloutsos, M. van de Panne, and D. Terzopoulos.
Dynamic free-form deformations for animation synthe-
sis. IEEE Transactions on Visualization and Computer
Graphics, 3(3):201–214, /1997.

18. G. Farin. Curves and Surfaces for Computer Aided Ge-
ometric Design: A Practical Guide. Academic Press
Inc., 1993.

19. N. Frisch and T. Ertl. Deformation of finite element
meshes using directly manipulated free-form deforma-
tion. In Proceedings of the seventh ACM symposium on
Solid modeling and applications, pages 249–256. ACM
Press, 2002.

20. S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R.
Jones. Adaptively sampled distance fields: a general
representation of shape for computer graphics. In Pro-
ceedings of the 27th annual conference on Computer
graphics and interactive techniques, pages 249–254.
ACM Press/Addison-Wesley Publishing Co., 2000.

21. J. E. Gain and N. A. Dodgson. Adaptive refinement
and decimation under free-form deformation. In Euro-
graphics UK ’99, 1999.

22. J. Greissmair and W. Purgathofer. Deformation of
solids with trivariate b-splines. In Computer Graphics
Forum, pages 137–148, 1989.

23. W. M. Hsu, J. F. Hughes, and H. Kaufman. Direct
manipulation of free-form deformations. Computer
Graphics, 26(2):177–184, 1992.

24. S.-M. Hu, H. Zhang, C.-L. Tai, and J.-G. Sun. Direct
manipulation of ffd: efficient explicit solutions and de-
composible multiple point constraints. The Visual Com-
puter, 17, 2001.

25. T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: a
sketching interface for 3d freeform design. In Proceed-
ings of the 26th annual conference on Computer graph-
ics and interactive techniques, pages 409–416. ACM
Press/Addison-Wesley Publishing Co., 1999.

26. O. Karpenko, J. F. Hughes, and R. Raskar. Free-form
sketching with variational implicit surfaces. Computer
Graphics Forum, 21(3), September 2002.

27. L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Sei-
del. Interactive multi-resolution modeling on arbitrary
meshes. Computer Graphics, 32(Annual Conference
Series):105–114, 1998.

28. L. P. Kobbelt, T. Bareuther, and H.-P. Seidel. Multires-
olution shape deformations for meshes with dynamic
vertex connectivity. Computer Graphics Forum, 19(3),
August 2000.

29. S. Lee. Interactive multiresolution editing of arbitrary
meshes. Computer Graphics Forum, 1999.

30. L. Markosian, J. M. Cohen, T. Crulli, and J. Hughes.
Skin: a constructive approach to modeling free-form
shapes. In Proceedings of the 26th annual confer-
ence on Computer graphics and interactive techniques,
pages 393–400. ACM Press/Addison-Wesley Publish-
ing Co., 1999.

31. M. Novotni and R. Klein. Computing geodesic dis-
tances on triangular meshes. In The 10-th International
Conference in Central Europe on Computer Graph-
ics, Visualization and Computer Vision (WSCG), pages
341–347, 2002.

32. A. Opalach and M. Cani-Gascuel. Local deformations
for animation of implicit surfaces. In W. Straßer, editor,
13th Spring Conference on Computer Graphics, pages
85–92, 1997.

33. M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape
modeling with point-sampled geometry. In Proceed-
ings of the 30th annual conference on Computer graph-
ics and interactive techniques (to appear), 2003.

34. R. Penrose. A generalized inverse for matrices. In Proc.
Cambridge Philos. Soc., pages 406–413, 1955.

35. R. N. Perry and S. F. Frisken. Kizamu: a system for
sculpting digital characters. In Proceedings of the 28th
annual conference on Computer graphics and interac-
tive techniques, pages 47–56. ACM Press, 2001.

36. R.Raffin, M. Neveu, and F. Jaar. Curvilinear displace-
ment of free-form-based deformation. The Visual Com-
puter, 16(1):38–46, 2000.

37. T. W. Sederberg and S. R. Parry. Free-form deformation
of solid geometric models. In Proceedings of the 13th
annual conference on Computer graphics and interac-
tive techniques, pages 151–160. ACM Press, 1986.

c© The Eurographics Association 2003.

216



Bendels et al / Mesh Forging

38. S.Yoshizawa, A. G. Belyaev, and H. Seidel. A simple
approach to interactive free-form shape deformations.
In Pacific Graphics 2002 Proceedings, pages 471–474,
2002.

39. W. Welch and A. Witkin. Free-form shape design using
triangulated surfaces. Computer Graphics, 28(Annual
Conference Series):247–256, 1994.

40. R. C. Zeleznik, K. P. Herndon, and J. F. Hughes.
Sketch: an interface for sketching 3d scenes. In Pro-
ceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 163–170.
ACM Press, 1996.

41. D. Zorin, P. Schröder, and W. Sweldens. Interac-
tive multiresolution mesh editing. Computer Graphics,
31(Annual Conference Series):259–268, 1997.

42. M. Zwicker, M. Pauly, O. Knoll, and M. Gross.
Pointshop 3d: an interactive system for point-based sur-
face editing. In Proceedings of the 29th annual confer-
ence on Computer graphics and interactive techniques,
pages 322–329. ACM Press, 2002.

c© The Eurographics Association 2003.

217



Figure 1: Application of the rotational editing scheme. The tips of the bunny’s ears are picked and dragged, while not only the
region of influence (indicated by the red colored area (1) and (2)) but also the shape of the edit can interactively be modified and
adjusted ((4) and (5)) using the shape function ((3) and (6) resp.) until the impression is visually satisfying. Picture (7) shows
the corresponding edit using the translational scheme with a slightly adjusted shape function to produce a smooth changeover
at the bunny’s head.

Figure 2: Modelling a hand taking grip on a ball. The fingers of the hand are transformed by a simple drag on the finger tips.
The force field induced by the occluder causes the fingers to be shaped around the ball instead of intruding into it. Influence
functions prevent the fingers from flattening.

Figure 3: (a) Editing operation with Euclidean (pictures 1 and 2) and geodesic (3 and 4) distances. The region of influence is
indicated by red color, the little sphere at the tip of the index finger is the handle that is dragged during the edit. Note how the
middle and ring finger are modified together with the index finger in the upper right picture. (b) Turning a model’s head. As
indicated by the red color, the shoulder region remains fixed, while the head is turned (using the blue handle on the nose). By
using multiple (three) anchors (green spheres at the top of the head) we define an anisotropic ROI s.t. the head is turned rigidly,
with a smooth changeover at the neck.

277


